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sufficiently rich and players are arbitrarily patient. This paper shows that for stage
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1 Introduction

The folk theorem for infinitely repeated games with imperfect public monitoring
(Fudenberg et al. 1994; henceforth FLM) implies that, under technical (full-rank)
conditions on the stage game, nearly efficient payoffs can be supported in perfect
public equilibrium (PPE) under the assumptions that players are arbitrarily patient
(i.e., the common discount factor tends to 1) and the monitoring structure is suffi-
ciently rich. For general stage games, the restriction to nearly efficient payoffs and
the assumptions that players are arbitrarily patient and that the monitoring structure
is sufficiently rich are all necessary: It is easy to construct stage games and imperfect
monitoring structures for which exactly efficient payoffs cannot be supported for any
discount factor (<1) and nearly efficient payoffs cannot be supported for discount fac-
tors bounded away from 1. And Radner et al. (1986) construct a repeated partnership
scenario in which players see only two signals—success or failure—and even nearly
efficient payoffs cannot be supported even when players are arbitrarily patient.

This paper shows that, for a large and important class of stage games, exactly
efficient payoffs are supportable in PPE even when the monitoring structure is very
limited. The stage games we consider are those that arise in many common and impor-
tant settings in which the actions of players interferewith each other. The paradigmatic
setting is that of sharing a resource that can be efficiently accessed by only one player
at a time—so that efficient sharing requires alternation over time—but as we illustrate
by examples, the same interference phenomenon may be present in partnership games
and in contests (and surely in many other scenarios). We focus on monitoring struc-
tures with only two signals; this is a restriction, but it is stark and easy to understand
and also very natural: In the partnership scenario of Radner et al. (1986) for instance,
the signal is the success or failure of the partnership interaction. [As we discuss later,
an additional reason for focusing on simple monitoring structures is that the signal
does not necessarily arise directly from the actions of the players as in or from the
interactions of the players with the market as in Green and Porter (1984) but rather
must be provided by some outside agency, which may face constraints and costs on
what it can observe and what it can communicate to the players.] A feature of our
work that we think is important in any realistic setting is that it is constructive: Given
an efficient target payoff profile, we explicitly identify the degree of patience players
must exhibit in order that the target payoff be achievable in PPE and we provide a
simple explicit algorithm that allows each player to compute (based on public infor-
mation) its equilibrium action in each period. For games with two players, we show
that the set of efficient payoffs that can be supported as a PPE is independent of the
discount factor, provided the discount factor is above some threshold.1

We abstract what we see as the essential common features of a variety of scenarios
by two assumptions about the stage game. The first is that for each player i there is a
unique action profile ãi that i most prefers. (In the resource sharing scenario, ãi would
typically be the profile in which only player i accesses the resource; in the partnership

1 Mailath et al. (2002) establish a similar result for the repeatedPrisoner’sDilemmawith perfectmonitoring;
Athey and Bagwell (2001) establish a similar result for equilibrium payoffs of two-player symmetric
repeated Bertrand games. Mailath and Samuelson (2006) present examples with restricted signal structures.
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Efficient outcomes in repeated games with limited… 3

scenario, it would typically be the profile in which player i free rides.) The second is
that for every action profile a that is not in the set {ãi } of preferred action profiles the
corresponding utility profile u(a) lies below the hyperplane H spanned by the utility
profiles {u(ãi )}. (This corresponds to the idea that player actions interfere with each
other, rather than complementing each other.)As usual in this literature,we assume that
players do not observe the profile a of actions but rather only some signal y ∈ Y whose
distribution ρ(y|a) depends on the true profile a. We depart from the literature by
assuming that the set Y consists of only two signals and that (profitable) single-player
deviations from any of the preferred action profiles ãi can be statistically distinguished
from conformity with ãi by altering the probability distribution on signals in the same
direction. (But we do not assume that different deviations from ãi can be distinguished
from each other.) For further comments, see the examples in Sect. 3.

To help understand the commonplace nature of our problem and assumptions, we
offer three examples: a repeated partnership game, a repeated contest, and a repeated
resource sharing game. In the repeated partnership game, the signal arises from the
state of the market. In the repeated contest, signals arise from direct observation of
the outcome of the contest or from information provided by the agency that conducts
the contest. In this setting, there is a natural choice of signal structures and hence
of the amount of information to provide, and this choice affects the possibility of
efficient PPE. In the repeated resource sharing game, signals are provided by an outside
agency. In this setting, there is again a natural choice of signal structures and the choice
affects the distribution of information provided but not the amount, and so has quite
a different effect on the possibility of efficient PPE. As we discuss, the agency’s
choice between signal structures will most naturally be determined by the agency’s
objectives; simulations show that different objectives are best served by different signal
structures.

Our constructions build on the framework of Abreu et al. (1990) (hereafter APS)
and in particular on the machinery of self-generating sets. APS show that every pay-
off in a self-generating set can be supported in a perfect public equilibrium, so it is
no surprise that we prove our main result (Theorem 1) by constructing appropriate
self-generating sets of a particularly simple form. A technical result that seems of sub-
stantial interest in itself (Theorem 2) provides necessary and sufficient conditions that
sets of this form be self-generating. Our construction provides an explicit algorithm for
computing PPE strategies using continuation values in the constructed self-generating
sets. Because all continuation payoffs lie in the specified self-generating set, the equi-
libria we construct have the property that each player is guaranteed at least a specific
security level following every history. Because all continuation payoffs are efficient,
the equilibria we construct are renegotiation-proof following every history: Players
would never unanimously agree to follow an alternative strategy profile. (Fudenberg
et al. (2007)— henceforth FLT—emphasize the same point.)

The literature on repeated games with imperfect public monitoring is quite large—
much too large to survey here; we refer instead to Mailath and Samuelson (2006)
and the references therein. However, explicit comparisons with two papers in this
literature may be especially helpful. As we have noted, FLM consider general stage
games (subject to some technical conditions) but assume that the monitoring structure
is rich—in particular that there are many signals—and only establish the existence of
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4 M. van der Schaar et al.

nearly efficient PPE. Moreover, FLM require discount factors arbitrarily close to 1 in
order to obtain PPE that are arbitrarily close to efficient. By contrast, we restrict to
a (natural and important) class of stage games, we require only two signals even if
action spaces are infinite, and we obtain exactly efficient PPE. FLT are much closer to
the present work. FLT fix Pareto weights λ1, . . . , λn for which the feasible set X lies
weakly below the hyperplane H = {x ∈ R

n : ∑ λi xi = �}, so that the intersection
V = H ∩ X consists of exactly efficient payoff vectors. As do we, FLT ask what
vectors in V can be achieved as a PPE of the infinitely repeated game. They identify
the largest (compact convex) set Q ⊂ V with the property that every target vector
v ∈ intQ (the relative interior of Q with respect to H ) can be achieved in a PPE of the
infinitely repeated game for some discount factor δ(v) < 1. However, for general stage
games and general monitoring structures, the set Q may be empty; FLT do not offer
conditions that guarantee that Q is not empty. Moreover (as do FLM), FLT focus on
what can be achieved when players are arbitrarily patient; even when Q is not empty,
they do not identify any PPE for any given discount factor δ < 1. We give specific
conditions that guarantee that Q is not empty and provide explicit and computable PPE
strategies for given discount factors. For games with two players, FLT find a sufficient
condition that there be no efficient PPE for any discount factor; we find a (sharper)
sufficient and necessary condition, and we show that the set of efficient payoffs that
can be supported as a PPE is independent of the discount factor, provided the discount
factor is above some threshold. See Sect. 6 for additional comparisons with results in
the unpublished working paper version of FLT.

At the risk of repetition, we want to emphasize several features of our results. The
first is that we do not assume discount factors are arbitrarily close to 1; rather, we
give explicit sufficient conditions on the discount factors (and on the other aspects
of the environment) to guarantee the existence of PPE. The importance of this seems
obvious in all environments—especially since the discount factor encodes both the
innate patience of players and the probability that the interaction continues. The second
is that we assume only two signals, even when action spaces are infinite. Again, the
importance of this seems obvious in all environments, but especially in those in which
signals are not generated by some exogenous process but must be provided. (In the
latter case, it seems obvious—and in practice may be of supreme importance—that the
agency providing signals may wish or need to choose a simple information structure
that employs a small number of signals, saving on the cost of observing the outcome
of play and on the cost of communicating to the agents. More generally, there may
be a trade-off between the efficiency obtainable with a finer information structure and
the cost of using that information structure.) Finally, we provide a simple distributed
algorithm that enables each player to calculate its equilibrium play online, in real time,
period by period (not necessarily at the beginning of the game).

Following this Introduction, Sect. 2 presents the formalmodel; Sect. 3 presents three
examples that illustrate the model. Section 4 presents the main theorem (Theorem 1)
on supportability of efficient outcomes in PPE. Section 5 presents the more technical
result (Theorem 2) characterizing efficient self-generating sets. Section 6 specializes
to the case of two players (Theorem 3). Section 7 concludes. We relegate all proofs to
the “Appendix”.
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Efficient outcomes in repeated games with limited… 5

2 Model

We first describe the general structure of repeated games with imperfect public mon-
itoring; our description is parallel to that of FLM and Mailath and Samuelson (2006)
(henceforth MS). Following the description, we formulate the assumptions for the
specific class of games we treat.

2.1 Stage game

The stage game G is specified by:

– a set N = {1, . . . , n} of players
– for each player i

– a compact metric space Ai of actions
– a continuous utility function ui : A = A1 × . . . An → R

2.2 Public monitoring structure

The public monitoring structure is specified by

– a finite set Y of public signals
– a continuous mapping ρ: A → �(Y )

As usual, we write ρ(y|a) for the probability that the public signal y is observed when
players choose the action profile a ∈ A.

2.3 The repeated game with imperfect public monitoring

In the repeated game, the stage game G is played in every period t = 0, 1, 2, . . ..
If Y is the set of public signals, then a public history of length t is a sequence
(y0, y1, . . . , yt−1) ∈ Y t . We write H(t) for the set of public histories of length
t , HT = ⋃T

t=0 H(t) for the set of public histories of length at most T and
H = ⋃∞

t=0 H(t) for the set of all public histories of all finite lengths. A private
history for player i includes the public history and the actions taken by player i , so
a private history of length t is a sequence (a0i , y

0; . . . , at−1
i , yt−1) ∈ At

i × Y t . We

write Hi (t) for the set of i’s private histories of length t , HT
i = ⋃T

t=0 Hi (t) for the
set of i’s private histories of length at most T and Hi = ⋃∞

t=0 Hi (t) for the set of i’s
private histories of all finite lengths.

A pure strategy for player i is a mapping from all private histories into player i’s
set of actions σi :Hi → Ai . A public strategy for player i is a pure strategy that is
independent of i’s own action history; equivalently, a mapping from public histories
to i’s pure actions σi :H → Ai .

We assume as usual that all players discount future utilities using the same discount
factor δ ∈ (0, 1), and we use long-run averages: If {ut } is the stream of expected
utilities, then the vector of long-run average utilities is (1 − δ)

∑∞
t=0 δt ut . (Note that

we do not discount date 0 utilities). A strategy profile σ :H1 × . . .×Hn → A induces
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6 M. van der Schaar et al.

a probability distribution over public and private histories and hence over ex ante
utilities. We abuse notation and write u(σ ) for the vector of expected (with respect to
this distribution) long-run average ex ante utilities when players follow the strategy
profile σ .

As usual a strategy profile σ is an equilibrium if each player’s strategy is optimal
given the strategies of others. A strategy profile is a public equilibrium if it is an
equilibrium and each player uses a public strategy; it is a perfect public equilibrium
(PPE) if it is a public equilibrium following every public history. Note that if the signal
distribution ρ(y|a) has full support for every action profile a, then every public history
always occurs with strictly positive probability so perfect public equilibrium coincides
with public equilibrium. Keeping the stage game G and the monitoring structure Y, ρ

fixed, we write E(δ) for the set of long-run average payoffs that can be achieved in a
PPE of the infinitely repeated game when the discount factor is δ < 1.

2.4 Interpretation

We interpret payoffs in the stage game as ex ante payoffs. Note that this interpretation
allows for the possibility that each player’s ex post/realized payoff depends on the
actions of all players and the realization of the public signal—and perhaps on the
realization of some other random event (see the examples). Of course, players do not
observe ex ante payoffs—they observe only their own actions and the public signal.2

In our formulation,which restricts players to use public strategies,we tacitly assume
that players make no use of any information other than that provided by the public
signal; in particular, players make no use of information that might be provided by
the realized utility they experience each period. As discussed in FLM and MS, this
assumption admits a number of possible interpretations; one is that players do not
observe their realized period utilities, but only the total realized utility at the termina-
tion of the interaction.

It is important to keep inmind that if players other than player i use a public strategy,
then it is always a best response for player i to use a public strategy (MS, Lemma
7.1.1). Moreover, requiring agents to use public strategies in equilibrium but allowing
arbitrary deviation strategies (as we do) means that fewer outcomes can be supported
in equilibrium than if we allowed agents to use arbitrary strategies in equilibrium.
Since our intent is to show that efficient outcomes can be supported, restricting to
perfect public equilibrium makes our task more difficult.

2.5 Games with interference

To this point, we have described a very general setting; we now impose additional
assumptions—first on the stage game and then on the information structure—that we
exploit in our results.

2 Although it is often assumed that each player’s ex post/realized payoff depends only on the its own action
and the public signal, FLM explicitly allow for the more general setting we consider here.
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Efficient outcomes in repeated games with limited… 7

Set U = {u(a) ∈ R
n : a ∈ A} and let X = co(U ) be the closed convex hull of U .

For each i set

ṽii = max
a∈A

ui (a)

ãi = argmax
a∈A

ui (a)

Compactness of the action space A and continuity of utility functions ui guarantee
thatU and X are compact, that ṽii is well defined and that the argmax is not empty. For
convenience, we assume that the argmax is a singleton; i.e., the maximum utility ṽii
for player i is attained at a unique strategy profile ãi .3 We refer to ãi as i’s preferred
action profile and to ṽi = u(ãi ) as i’s preferred utility profile. In the context of
resource sharing, ãi will be the (unique) action profile at which agent i has optimal
access to the resource and other players have none; in some other contexts, ãi will
be the (unique) action profile at which i exerts effort and others players exert none.
For this reason, we will often say that i is active at the profile ãi and other players
are inactive. (However, we caution the reader that in the repeated partnership game of
Example 1, ãi is the action profile at which player i is free riding and his partner is
exerting effort.) Set Ã = {ãi } and Ṽ = {ṽi } and write V = co (Ṽ ) for the convex hull
of Ṽ . Note that X is the convex hull of the set of vectors that can be achieved—for
some discount factor—as long-run average ex ante utilities of repeated plays of the
game G (not necessarily equilibrium plays of course) and that V is the convex hull
of the set of vectors that can be achieved—for some discount factor—as long-run
average ex ante utilities of repeated plays of the game G in which only actions in Ã
are used. We refer to X as the set of feasible payoffs and to V as the set of efficient
payoffs.4

We abstract the motivating class of resource allocation problems by imposing a
condition on the set of preferred utility profiles.

Assumption 1 The set {ṽi } of preferred utility vectors is a linearly independent set,
and there are (Pareto) weights λ1, . . . , λn > 0 such that

∑
j λ j ṽ

i
j = 1 for each i and

∑
j λ j u j (a) < 1 for each a ∈ A, a /∈ Ã. (Thus, the set H = {x ∈ R

n : ∑ j λ j x j = 1}
is a hyperplane, payoffs in Ṽ lie in H and all pure strategy payoffs not in Ṽ lie strictly
below H . That the sum

∑
j λ j ṽ

i
j is 1 is just a normalization.)

2.6 Assumptions on the monitoring structure

As noted in the Introduction, we assume that there are only two signals and that
profitable deviations from the profiles ãi exist and are statistically detectable in a
particularly simple way.

3 The assumption of uniqueness could be avoided, at the expense of some technical complication.
4 This is a slight abuse of terminology. Assumption 1 below is that V is the intersection of the set of feasible
payoffs with a bounding hyperplane, so every payoff vector in V is Pareto efficient and yields maximal
weighted social welfare and other feasible payoffs yield lower weighted social welfare—but other feasible
payoffs might also be Pareto efficient.
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8 M. van der Schaar et al.

Table 1 Partnership
game—realized payoffs

g b

E g/2 − e b/2 − e

S g/2 b/2

Assumption 2 The set Y contains precisely two signals g, b (good, bad).

Assumption 3 For each i ∈ N and each j �= i , there is an action a j ∈ A j such that
u j (a j , ã

i
− j ) > u j (ã

i ). Moreover,

a j ∈ A j , u j (a j , ã
i
− j ) > u j (ã

i ) ⇒ ρ(g|a j , ã
i
− j ) < ρ(g|ãij , ãi− j )

That is, given that other players are following ãi , any strictly profitable deviation
by player j strictly reduces the probability that the good signal g is observed and so
strictly increases the probability that the bad signal b is observed.5,6

Assumption 3 guarantees that all profitable single-player deviations from ãi alter
the signal distribution in the same direction—although perhaps not to the same extent.
We allow for the possibility that non-profitable deviations may not be detectable in
the same way—perhaps not detectable at all.

3 Examples

The assumptions we have made—about the structure of the game and about the
information structure—are far from innocuous, but they apply in a wide variety of
interesting environments. Here, we describe three simple examples which motivate
and illustrate the assumptions we have made and the conclusions to follow.

The first example is a repeated partnership, very much in the spirit of an example
in MS (Section 7.2) but with a twist.

Example 1 Repeated partnership. Each of two partners can choose to exert costly
effort E or shirk S. Realized output can be either good g or bad b (g > b > 0) and
depends stochastically on the effort of the partners. Realized individual payoffs as a
function of actions and realized output are shown in Table 1.

In contrast to MS, we assume that if both players exert effort they interfere with
each other. Output follows the distribution

5 The assumption that the same signals are good/bad independently of the identity of the active player i is
made only to reduce the notational burden. The interested reader will easily check that all our arguments
allow for the possibility that which signal is good and which is bad depend on the identity of the active
player.
6 The restriction to two signals is not entirely innocuous. If there were more than two signals, the conditions
identified in Theorem 2 will continue to be sufficient for a set to be self-generating but may no longer be
necessary. Moreover, exploiting a richer set of signals may lead to a larger set of PPE; see the discussions
following Examples 2 and 3.
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Efficient outcomes in repeated games with limited… 9

Table 2 Partnership game—ex
ante payoffs

E S

E (z, z) (0, x)

S (x, 0) (y, y)

Fig. 1 Feasible region for the
repeated partnership game

COL

ROW

feasible
payoffs

(z, z)

(y, y)

(0, x)

(x, 0)

ρ(g|a) =
⎧
⎨

⎩

p if a = (E, S) or (S, E)

q if a = (E, E)

r if a = (S, S)

where p, q, r ∈ (0, 1) and p > q > r . The signal is most likely to be g (high output)
if exactly one partner exerts effort.

The ex ante payoffs can be calculated from the data above; it is convenient to
normalize so that the ex ante payoff to the player who exerts effort when his partner
shirks is 0: (1/2)[pg + (1− p)b] − e = 0. With this normalization, the ex ante game
matrix G is shown in Table 2; we assume parameters are such that x > 2y > 0 > z
(we leave it to the reader to calculate the values of x, y, z in terms of output g, b and
probabilities p, q, r ).

It is easily checked that the stage game andmonitoring structure satisfy our assump-
tions: (S, E) is the preferred profile for ROW and (E, S) is the preferred profile for
COL. Figure 1 shows the feasible region for the repeated partnership game.7

As we will show in Sect. 6, we can completely characterize the most efficient
outcomes that can be achieved in a PPE. For x ≤ 2p/(p − r)y, there is no efficient
PPE payoff for any discount factor δ ∈ (0, 1). For x > 2p/(p − r)y, set

δ∗ = 1

1 +
(

x− p
p−r ·2y

x+ 1−p
p−r ·2y

)

7 Note that if x < 2y, then the the stage game fails Assumption 1; in particular, some payoffs in the convex
hull of the preferred profiles (E, S), (S, E) are not Pareto optimal.
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10 M. van der Schaar et al.

It follows from Theorem 3 that if δ ≥ δ∗ then

E(δ) = {(v1, v2) : v1 + v2 = x; vi ≥ p/(p − r)y}

Note that the set of efficient PPE outcomes does not increase as δ → 1; patience is
rewarded—but only up to a point.

If we identify the monitoring technology with the probabilities p, q, r , we should
note that different monitoring technologies provide different information, but that
there may not be any natural ordering in the sense of Blackwell informativeness (for
instance, if we are given alternative probabilities p′, q ′, r ′ with |p − .5| < |p′ − .5|
but |r − .5| > |r ′ − .5|, then the monitoring technologies are not comparable in the
sense of Blackwell informativeness), so that the results of Kandori (1992) do not
apply.

Example 2 Repeated contest. In each period, a set of n ≥ 2 players competes for a
single indivisible prize that each of them values at R > 0. Winning the competition
depends (stochastically) on the effort exerted by each player. Each agent’s effort inter-
feres with the effort of others, and there is always some probability that no one wins
(the prize is not awarded) independently of the choice of effort levels. The set of i’s
effort levels/actions is Ai = [0, 1]. If a = (ai ) is the vector of effort levels, then the
probability agent i wins the competition and obtains the prize is

Prob(i wins|a) = ai

⎛

⎝η − κ
∑

j �=i

a j

⎞

⎠

+

where η, κ ∈ (0, 1) are parameters, and (·)+ � max{·, 0}. That η < 1 reflects that
there is always some probability the prize is not awarded; κ measures the strength of
the interference. Notice that competition is destructive: If more than one agent exerts
effort that lowers the probability that anyone wins. Utility is separable in reward and
effort; effort is costly with constant marginal cost c > 0. To avoid trivialities and
conform with our Assumptions, we assume Rη > c, (η + κ)2 < 4κ , and κ >

η
2 .

We assume that, at the end of each period of play, players observe (or are told)
only whether or not the prize was awarded (but not to whom). So the signal space is
Y = {g, b}, where g is interpreted as the announcement that the prize was awarded
and b is interpreted as the announcement that the prize was not awarded.8

The ex ante expected utilities for the stage game G are given by

ui (a) = ai

⎛

⎝η − κ
∑

j �=i

a j

⎞

⎠

+
R − cai

8 Note that realized payoffs depend on who actually wins the prize, not only on the profile of actions and
the announcement.
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Efficient outcomes in repeated games with limited… 11

The signal distribution is defined by

ρ(g|a) =
∑

i

ai

⎛

⎝η − κ
∑

j �=i

a j

⎞

⎠

+

Straightforward calculations show that our assumptions are satisfied. Player i’s
preferred action profile ãi has ãii = 1 and ãij = 0 for j �= i : i exerts maximum effort,
others exert none. Note that this does not guarantee that i wins the prize—the prize
may not be awarded—but the effort profiles ãi are precisely those that maximize the
probability that someone wins the prize.

We have assumed that, in each period, players learn whether or not someone wins
the competition but do not learn the identity of the winner. We might consider an
alternativemonitoring structure inwhich the players do learn the identity of thewinner.
To see why this matters, suppose that a strategy profile σ calls for ãi to be played after
a particular history. If all players follow σ , then only player i exerts nonzero effort so
only two outcomes can occur: Either player i wins or no one wins. If player j �= i
deviates by exerting nonzero effort, a third outcome can occur: j wins. With either
monitoring structure, it is possible for the players to detect (statistically) that someone
has deviated—the probability that someone wins goes down—but with the second
monitoring structure, it is also possible for the players to detect (statistically) who has
deviated—because the probability that the deviator wins becomes positive. Hence,
with the first monitoring structure all deviations must be “punished” in the same way,
butwith the secondmonitoring structure, “punishments” can be tailored to the deviator.
If punishments can be “tailored” to the deviator, then punishments can be more severe;
if punishments can be more severe, it may be possible to sustain a wider range of PPE.
In short: The monitoring structure matters.

But the monitoring structure is not arbitrary: Players will not learn the identity of
the winner unless they can observe it directly—which might or might not be possible
in a given scenario—or they are informed of it by an outside agency—which requires
the outside agency to reveal additional information. This is information the agency
conducting the contest would possess—but whether or not this is the information
the agency would wish—or be permitted—to reveal would seem to depend on the
environment. A similar point is made more sharply in the final example below.

Example 3 Repeated resource sharing. We consider a very common communication
scenario. N ≥ 3 users (players) send information packets through a common server.
The server has a nominal capacity of χ > 0 (packets per unit time), but the capacity is
subject to random shocks so the actually realized capacity in a given period is χ − ε,
where the random shock ε is distributed in some interval [0, ε̄] with (known) uniform
distribution ν. In each period, each player chooses a packet rate (packets per unit
time) ai ∈ Ai = [0, χ ]. This is a well-studied problem; assuming that the players’
packets arrive according to a Poisson process, the whole system can be viewed as
what is known as anM/M/1 queue; see Bharath-Kumar and Jaffe (1981) for instance.
It follows from the standard analysis that if ε is the realization of the shock, then packet
deliveries will be subject to a delay of
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12 M. van der Schaar et al.

D(a, ε) =
{
1/(χ − ε −∑N

i=1 ai ) if
∑N

i=1 ai < χ − ε

∞ if
∑N

i=1 ai ≥ χ − ε

Given the delay D, each player’s realized utility is its “power”—the ratio of the p-th
power of its own packet rate to the delay:

u∗
i (a, D) = a p

i /D

The exponent p > 0 is a parameter that represents trade-off between rate and delay.9

(If delay is infinite utility is 0.)

The server is monitored by an agency that does not observe packet rates but can
measure the delay; however, measurement is costly and subject to error. We assume
the agency reports to the players, not the measured delay, but whether it is above or
below a chosen threshold D0. Thus, Y = {g, b} where g is interpreted as “delay was
low (below D0)” and b is interpreted as “delay was high (above D0).”

Each player i’s ex ante payoff is

ui (a) =
⎧
⎨

⎩

a p
i (χ − ε̄

2 −∑
a j ) if

∑
a j ≤ χ − ε̄

a p
i (χ −∑

a j )
χ−∑ a j

2ε̄ if χ − ε̄ <
∑

a j < χ

0 otherwise

and the distribution of signals is

ρ(g|a) =
∫ χ−∑ a j− 1

D0

0
dν(x) =

[
χ −∑

a j − 1
D0

]ε̄

0

ε̄
,

where [x]ba � min{max{x, a}, b} is the projection of x in the interval [a, b], and all
summations are taken over the range j = 1, . . . , N . As noted, g is the “good” signal:
Deviation from any preferred action profile increases the probability of realized delay,
hence increases the probability of measured delay, and reduces the probability that
reported delay will be below the chosen threshold.

Because players do not observe delay directly, the signal of delay must be provided.
It is natural to suppose this signal is provided by some agency, which must choose the
technology by which it observes delay and the threshold D0 “low delay” and “high
delay.” These choices will presumably be made according to some objective—but
different objectives will lead to different choices of D0, and there is no “obviously
correct” objective.10 (It is important to note that a higher/lower threshold D0 does not
correspond to more/less information, so the choice of D0 is not the choice of how
much information to reveal.)

9 In order to guarantee our assumptions are satisfied, we assume ε̄ ≤ 2
2+pχ .

10 Presumably the agency would prefer a more accurate measurement technology—but such a technology
would typically be more costly to employ.
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Fig. 2 Largest achievable fraction 1 − η as a function of threshold D0

This can be seen clearly in numerical results for a special case. Set capacity χ = 1
and ε̄ = 0.3. We consider two possible objectives.

– The agency chooses the threshold D0 to minimize the discount factor δ for which
some efficient sharing can be supported in a PPE.

– The agency chooses the threshold D0 to maximize the set of efficient payoffs that
can be supported in PPE for some discount factor δ. This is a somewhat imprecise
objective; to make it precise, set

V (η) = {v ∈ V : vi ≥ ηṽ for each i}

where ṽ is the utility of each player’s most preferred action and η ∈ [0, 1]. Note
that V (η) ⊂ V (η′) if η′ < η so to maximize the set of efficient payoffs that can
be supported in PPE for some discount factor δ, the agency should choose D0 so
that V (η) ⊂ E(δ) for some δ and the smallest possible η.

Figures 2 and 3 (which are generated from simulations) display the relationship
between the threshold D0, the smallest δ and the smallest η for several values of the
exponent p. The tension between the criteria for choosing the threshold D0 can be seen
most clearly when p = 1.2: To make it easiest to achieve many efficient outcomes,
the agency should choose a small threshold, but to make it easiest to achieve some
efficient outcome the agency should choose a large threshold.

We noted in Example 1 that different monitoring structures provide different infor-
mation, but that there may not be any natural ordering in the sense of Blackwell
informativeness, so that the results of Kandori (1992) do not apply. In the current
Example, note that a different choices of threshold D0 yield different information, but
that higher thresholds are neither more nor less informative in the sense of Blackwell.
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Fig. 3 Smallest achievable discount factor δ as a function of threshold D0

A final remark about this Example may be useful. We have assumed throughout
that players do not condition on their realized utility but it is worth noting that in
this case, even if players did condition on their realized utility monitoring would still
be imperfect. While players who transmit (choose packet rates >0) could back out
realized delay, players who do not transmit cannot back out realized delay and must
therefore rely on the announcement of delay to know how to behave in the next period.
Hence, these announcements serve to keep players on the same informational page.

4 Perfect public equilibria

From this point on, we consider a fixed stage game G and monitoring structure Y, ρ

and maintain the notation and assumptions of Sect. 2. For fixed δ ∈ (0, 1), we write
E(δ) for the set of (long-run average) payoffs that can be achieved in a PPE when the
discount factor is δ. Our goal is to find conditions—on payoffs, signal probabilities,
and discount factor—that enable us to construct PPE that achieve efficient payoffs
with some degree of sharing among all players. In other words, we are interested in
conditions that guarantee that E(δ) ∩ int V �= ∅.

In order to write down the conditions we need, we first introduce some notions and
notations. The first notions are two measures of the profitability of deviations; these
play a prominent role in our analysis. Given i, j ∈ N with i �= j set:

α(i, j) = sup

{
u j (a j , ã

i
− j ) − u j (ã

i )

ρ(b|a j , ã
i
− j ) − ρ(b|ãi ) :

a j ∈ A j , u j (a j , ã
i
− j ) > u j (ã

i )

}
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β(i, j) = inf

{
u j (a j , ã

i
− j ) − u j (ã

i )

ρ(b|a j , ã
i
− j ) − ρ(b|ãi ) :

a j ∈ A j , u j (a j , ã
i
− j ) ≤ u j (ã

i ), ρ(b|a j , ã
i
− j ) < ρ(b|ãi )

}

Note that u j (a j , ã
i
− j ) − u j (ã

i ) is the gain or loss to player j from deviating from

i’s preferred action profile ãi and ρ(b|a j , ã
i
− j )−ρ(b|ãi ) is the increase or decrease in

the probability that the bad signal occurs (equivalently, the decrease or increase in the
probability that the good signal occurs) following the same deviation. In the definition
of α(i, j), we consider only deviations that are strictly profitable; by assumption, such
deviations exist and strictly increase the probability that the bad signal occurs. In view
of Assumption 3, α(i, j) is strictly positive. In the definition of β(i, j), we consider
only deviations that are unprofitable and strictly decrease the probability that the bad
signal occurs, so β(i, j) is the infimum of nonnegative numbers and so is necessarily
+∞ (if the infimum is over the empty set) or finite and nonnegative.

To gain some intuition, think about how player j could gain by deviating from ãi .
On the one hand, j could gain by deviating to an action that increases its current payoff.
By assumption, such a deviationwill increase the probability of a bad signal; assuming
that a bad signal leads to a lower continuation utility, whether such a deviation will
be profitable will depend on the current gain and on the change in probability; α(i, j)
represents a measure of net profitability from such deviations. On the other hand,
player j could also gain by deviating to an action that decreases its current payoff but
also decreases the probability of a bad signal and hence leads to a higher continuation
utility. β(i, j) represents a measure of net profitability from such deviations.

The measures α, β yield inequalities that must be satisfied in order that there be
any efficient PPE. Here and throughout, we write int V for the interior of V relative
to the hyperlplane spanned by {ṽi }.

Proposition 1 Fix δ ∈ (0, 1). If E(δ) ∩ int V �= ∅ then

α(i, j) ≤ β(i, j)

for every i, j ∈ N , j �= i .

Proposition 2 Fix δ ∈ (0, 1). If E(δ) ∩ int V �= ∅ then

ṽii − ui (ai , ã
i
−i ) ≥ 1

λi

∑

j �=i

λ j α(i, j)
[
ρ(b|ai , ãi−i ) − ρ(b|ãi )

]

for every i ∈ N and for all ai ∈ Ai .
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16 M. van der Schaar et al.

The import of Propositions 1 and 2 is that if any of these inequalities fail, then
efficient payoff vectors with some degree of sharing can never be achieved in PPE, no
matter what the discount factor is.11

We need two further pieces of notation. Define

δ∗ �

⎛

⎝1 + 1 −∑
i λivi

∑
i

[
λi ṽ

i
i +∑

j �=i λ j α(i, j) ρ(b|ãi )
]

− 1

⎞

⎠

−1

For each i , set

vi = max
j �=i

(
ṽ
j
i + α( j, i)[1 − ρ(b|ã j )]

)

A straightforward but messy computation shows that vi is at least player i’s minmax
payoff.

Theorem 1 Fix v ∈ intV . If

(i) for all i, j ∈ N, i �= j : α(i, j) ≤ β(i, j)
(ii) for all i ∈ N, ai ∈ Ai :

ṽii − ui (ai , ã
i
−i ) ≥ 1

λi

∑

j �=i

λ j α(i, j)
[
ρ(b|ai , ãi−i ) − ρ(b|ãi )

]

(iii) for all i ∈ N: vi > vi
(iv) δ ≥ δ∗

then v can be supported in a PPE of G∞(δ).12,13

The proof of Theorem 1 is explicitly constructive: We provide a simple explicit
algorithm that computes a PPE strategy profile that achieves v. Given the various
parameters of the environment (game payoffs, information structure, discount factor)
and the target vector v, the algorithm takes as input in period t a current “continuation”
vector v(t) and computes, for each player j , a score d j (v(t)) defined as follows:

d j (v(t)) = λ j [v j (t) − v j ]
λ j [ṽ j

j − v j (t)] +∑
k �= j λk α( j, k)ρ(b|ã j )

.

11 Proposition 1 might seem somewhat mysterious: α is a measure of the current gain to deviation and β is
a measure of the future gain to deviation; there seems no obvious reason why PPE should necessitate any
particular relationship between α and β. As the proof will show, this relationship arises from the efficiency
of payoffs in V and the assumption that there are only two signals. Taken together, these enable us to identify
a crucial quantity (a weighted difference of continuation values) that, at any PPE, must lie (weakly) above
α and (weakly) below β; in particular, it must be the case that α lies weakly below β.
12 As we have noted, vi is at least player i’s minmax payoff, so (iii) implies that v dominates the minmax
vector, which is of course the familiar necessary condition for achievability in any equilibrium.
13 Again, we write int V for the interior of V relative to the hyperlplane spanned by {ṽi }.

123



Efficient outcomes in repeated games with limited… 17

Table 3 The algorithm used by each player

Input: The current continuation payoff v(t) ∈ Vµ

For each j

Calculate the indicator dj(v(t))

Find the player i with largest indicator (if a tie, choose largest i)

i = maxj

{
arg maxj∈N dj(v(t))

}

Player i is active; chooses action ãi
i

Players j �= i are inactive; choose action ãi
j

Update v(t + 1) as follows:

if yt = g then

vi(t + 1) = ṽi
i + (1/δ)(vi(t) − ṽi

i) − (1/δ − 1)(1/λi)
∑

j �=i λjα(i, j)ρ(b|ãi)

vj(t + 1) = ṽi
j + (1/δ)(vj(t) − ṽi

j) + (1/δ − 1)α(i, j)ρ(b|ãi)

for all j �= i

if yt = b then

vi(t + 1) = ṽi
i + (1/δ)(vi(t) − ṽi

i) + (1/δ − 1)(1/λi)
∑

j �=i λjα(i, j)ρ(g|ãi)

vj(t + 1) = ṽi
j + (1/δ)(vj(t) − ṽi

j) − (1/δ − 1)α(i, j)ρ(g|ãi)

for all j �= i

[We initialize the algorithm by setting v(0) = v.] Note that each player can compute
every score d j from the current continuation vector v(t) and the various parameters.
Having computed the entire score vector, d(v(t)), the algorithm finds the player i∗
whose score d j (v(t)) is greatest. (In case of ties, we arbitrarily choose the player with
the largest index.) The current action profile is i∗’s preferred action profile ãi

∗
. The

algorithm then computes the next period continuation vector as a function of which
signal in Y is realized.

Some intuition may be useful. Each player’s score d j (v(t)) represents the distance
from that player’s current cumulative payoff to that player’s target payoff, with appro-
priate weights. The player whose score is greatest is therefore the player who is “most
deserving” of play in the current period following its preferred action profile. The
“appropriate weights” reflect both the payoffs in the stage game and the monitoring
structure and are chosen to yield a strategy profile that is a PPE and also achieves the
desired target payoff vector (Table 3).

5 Self-generating sets

Our approach to Theorem 1 is to identify a class of sets that are natural candidates
for self-generating sets in the sense of APS, show that the Conditions we have are
sufficient for these sets to be self-generating, and then show that the desired target
vector lies in one of these sets. In fact, we show that the Conditions are also necessary
for these sets to be self-generating; since this seems of some interest in itself, we
present it as a separate Theorem.
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18 M. van der Schaar et al.

We begin by recalling some notions fromAPS. Fix a subsetW ⊂ co(U ) and a target
payoff v ∈ co(U ). The target payoff v can be decomposed with respect to the set W
and the discount factor δ < 1 if there exist an action profile a ∈ A and continuation
payoffs γ :Y → W such that

– v is the (weighted) average of current and continuation payoffs when players
follow a

v = (1 − δ)u(a) + δ
∑

y∈Y
ρ(y|a)γ (y)

– continuation payoffs provide no incentive to deviate: for each j and each a j ∈ A j

v j ≥ (1 − δ)u j (a j , a− j ) + δ
∑

y∈Y
ρ(y|a j , a− j )γ j (y)

Write B(W, δ) for the set of target payoffs v ∈ co(U ) that can be decomposed with
respect to W for the discount factor δ. The set W is self-generating if W ⊂ B(W, δ);
i.e., every target vector in W can be decomposed with respect to W .

By assumption, V lies in the bounding hyperplane H . Hence, if we write v ∈ V as
a convex combination v = ax + (1−a)x ′ with x, x ′ ∈ co(U ), then both x, x ′ ∈ V . In
particular, if it is possible to decompose v ∈ V with respect to any set and any discount
factor, then the utility u(a) of the associated action profile a and the continuation
payoffs must lie in V , and so the associated action profile a must lie in Ã. Because
we are interested in efficient payoffs, we can therefore restrict our search for self-
generating sets to subsets W ⊂ V . In order to understand which sets W ⊂ V can
be self-generating, we need to understand how players might profitably gain from
deviating from the current recommended action profile. Because we are interested in
subsetsW ⊂ V , the current recommended action profile will always be ãi for some i ,
so we need to ask how a player j might profitably gain from deviating from ãi . As we
have already noted, when i is the active player, a profitable deviation for player j �= i
might occur in one of two ways: j might gain by choosing an action a j �= ãij that

increases j’s current payoff or by choosing an action a j �= ãij that alters the signal

distribution in such a way as to increase j’s future payoff. Because ãi yields i its best
current payoff, a profitable deviation by i might occur only by choosing an action that
alters the signal distribution in such a way as to increase i’s future payoff. In all cases,
the issue will be the net of the current gain/loss against the future loss/gain.

We focus attention on sets of the form

Vμ = {v ∈ V : vi ≥ μi for each i}

where μ ∈ R
n . We assume throughout that μi > max j �=i ṽ

j
i and Vμ �= ∅. This

guarantees that when Vμ is not empty, we have Vμ ⊂ int V ; see Fig. 4.
The following result shows that the four conditions we have identified (on μ, the

payoff structure, the information structure Y, ρ and the discount factor δ) are both
necessary and sufficient that such a set Vμ be self-generating.
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Fig. 4 μ = (1/2, 1/2, 1/2)

Theorem 2 Fix the stage game G, the monitoring structure Y, ρ, the discount factor δ

and the vectorμwithμi > max j �=i ṽ
j
i for all i ∈ N. Suppose that Vμ has a non-empty

interior. In order that the set Vμ be self-generating, it is necessary and sufficient that
the following four conditions be satisfied.

(i) for all i, j ∈ N, i �= j : α(i, j) ≤ β(i, j)
(ii) for all i ∈ N, ai ∈ Ai :

ṽii − ui (ai , ã
i−i ) ≥ 1

λi

∑

j �=i

λ j α(i, j)
[
ρ(b|ai , ãi−i ) − ρ(b|ãi )

]

(iii) for all i ∈ N: μi ≥ vi
(iv) the discount factor δ satisfies

δ ≥ δμ �

⎛

⎝1 + 1 −∑
i λiμi

∑
i

[
λi ṽ

i
i +∑

j �=i λ j α(i, j) ρ(b|ãi )
]

− 1

⎞

⎠

−1

One way to contrast our approach with that of FLM is to think about the constraints
that need to be satisfied to decompose a given target payoff v with respect to a given
set Vμ. By definition, we must find a current action profile a and continuation payoffs
γ . The achievability condition (that v is the weighted combination of the utility of the
current action profile and the expected continuation values) yields a family of linear
equalities. The incentive compatibility conditions (that players must be deterred from
deviating from a) yield a family of linear inequalities. In the context of FLM, satisfy-
ing all these linear inequalities simultaneously requires a large and rich collection of
signals so that many different continuation payoffs can be assigned to different devia-
tions. Because we have only two signals, we are only able to choose two continuation
payoffs but still must satisfy the same family of inequalities—so our task is much
more difficult. It is this difficulty that leads to the Conditions in Theorem 2.

Note that δμ is decreasing in μ. Since Condition 3 puts an absolute lower bound
on μ and Condition 4 puts an absolute lower bound on δμ, this means that there is a
μ∗ such that Vμ∗ is the largest self-generating set (of this form) and δμ∗ is the smallest
discount factor (for which any set of this form can be self-generating). This may seem
puzzling—increasing the discount factor beyond a point makes no difference—but
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remember that we are providing a characterization of self-generating sets and not of
PPE payoffs. However, as we shall see in Theorem 3, for the two-player case, we do
obtain a complete characterization of (efficient) PPE payoffs and we demonstrate the
same phenomenon.

6 Two players

Theorem 2 provides a complete characterization of self-generating sets that have a
special form. If there are only two players, then maximal self-generating sets— the set
of all PPE—have this form and so it is possible to provide a complete characterization
of PPE under the additional assumption that the monitoring structure has full support.
We focus on what seems to be the most striking finding: Either there are no efficient
PPE outcomes at all for any discount factor δ < 1 or there is a discount factor δ∗ < 1
with the property that any target payoff in V that can be achieved as a PPE for some
δ can already be achieved for every δ ≥ δ∗.14

Theorem 3 If N = 2 (two players) and the monitoring structure has full support (i.e.,
0 < ρ(g|a) < 1 for each action profile a), then either

(i) no efficient payoff can be supported in a PPE for any discount factor δ < 1 or
(ii) there exist μ∗

1, μ
∗
2 and a discount factor δ∗ < 1 such that if δ∗ ≤ δ < 1, then the

set of payoff vectors that can be supported in a PPE when the discount factor is
δ is precisely

E = {v ∈ V : vi ≥ μ∗
i for i = 1, 2}

The proof yields explicit (messy) expressions for μ∗
1, μ

∗
2 and δ∗.

7 Conclusion

This paper contributes to the literature on repeated games with imperfect public
monitoring. It makes stronger assumptions about the stage game and the monitoring
structure than are common in the literature (the closest comparisons are Fudenberg
et al. (1994) and Fudenberg et al. (2007)) and uses those stronger assumptions to
make stronger conclusions about efficient PPE. In particular, it proves bounds on the
patience players must possess (i.e., on the discount factor) in order that specific effi-
cient outcomes be supportable in PPE, and it provides explicit constructions of PPE
strategies that support these outcomes.

Clearly, there is more to be done in a variety of directions. The monitoring struc-
ture has an enormous influence on the structure of efficient PPE (and of PPE more
generally). If we view the signal/monitoring structure as the choice made by some

14 The results of Theorem 3 suggest comparison with Proposition 4.11 in an unpublished Working Paper
version of FLT. Part 1 of Proposition 4.11 provides sufficient conditions that there be no PPE; Theorem 3
is sharper. Part 2 of Proposition 4.11 assumes that the monitoring structure satisfies “perfect detectability”
which seems to require more than two signals, and in any case is not satisfied in our setting.
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agency then (as Example 3 suggests), we might view the interaction as being among
n+1 players: an agency that acts only at the beginning and sets the signal/monitoring
structure, which forms part of the “rules” that govern the interaction of the remaining
n players, who interact repeatedly in the stage game. van der Schaar et al. (2013)
indicates a few tentative steps in this direction.

Appendix

Proof of Proposition 1 Fix an active player i and an inactive player j . Set

A(i, j) = {
a j ∈ A j : u j (a j , ã

i
− j ) > u j (ã

i )
}

B(i, j) = {
a j ∈ A j : u j (a j , ã

i
− j ) ≤ u j (ã

i ), ρ(b|a j , ã
i
− j ) < ρ(b|ãi )}

If either of A(i, j) or B(i, j) is empty, then α(i, j) ≤ β(i, j) by default, so assume in
what follows that neither of A(i, j), B(i, j) is empty.

Fix a discount factor δ ∈ (0, 1) and let σ be PPE that achieves an efficient payoff.
Assume that i is active following some history: σ(h) = ãi for some h. Because
σ achieves an efficient payoff, we can decompose the payoff v following h as the
weighted sum of the current payoff from ãi and the continuation payoff assuming that
players follow σ ; because σ is a PPE, the incentive compatibility condition for all
players j must obtain. Hence, for all a j ∈ A j , we have

v j = (1 − δ)u j (ã
i ) + δ

∑

y∈Y
ρ(y|ãi )γ j (y)

≥ (1 − δ)u j (a j , ã
i
− j ) + δ

∑

y∈Y
ρ(y|a j , ã

i
− j )γ j (y), (1)

Substituting probabilities for the good and bad signals yields

v j = (1 − δ)u j (ã
i ) + δ

[
ρ(g|ãi )γ j (g) + ρ(b|ãi )γ j (b)

]

≥ (1 − δ)u j (a j , ã
i
− j ) + δ

[
ρ(g|a j , ã

i
− j )γ j (g) + ρ(b|a j , ã

i
− j )γ j (b)

]

Rearranging yields

[
ρ(b|a j , ã

i
− j ) − ρ(b|ãi )][γ j (g) − γ j (b)

]
[

δ

1 − δ

]

≥ [
u j (a j , ã

i
− j ) − u j (ã

i )
]

Now suppose j �= i is an inactive player. If a j ∈ A(i, j), then ρ(yib|a j , ã
i
− j ) −

ρ(yib|ãi ) > 0 (by Assumption 3) so

[
γ j (g) − γ j (b)

]
[

δ

1 − δ

]

≥ u j (a j , ã
i
− j ) − u j (ã

i )

ρ(b|a j , ã
i
− j ) − ρ(b|ãi ) (2)
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If a j ∈ B(i, j), then ρ(yib|a j , ã
i
− j ) − ρ(yib|ãi ) < 0 (by definition) so

[
γ j (g) − γ j (b)

]
[

δ

1 − δ

]

≤ u j (a j , ã
i
− j ) − u j (ã

i )

ρ(b|a j , ã
i
− j ) − ρ(b|ãi ) (3)

Taking the sup over a j ∈ A(i, j) in (2) and the inf over a j ∈ B(i, j) in (3) yields
α(i, j) ≤ β(i, j) as desired.

Finally, if E(δ) ∩ int V �= ∅, to achieve any efficient equilibrium payoff in int V ,
every player i must be active following some history. Hence, we must have α(i, j) ≤
β(i, j) for any i, j ∈ N , i �= j . ��
Proof of Proposition 2 As above, we assume i is active following the history h and
that v is the payoff following h. Fix ai ∈ Ai . By definition, ui (ã

i ) ≥ ui (ai , ã
i
−i ).

With respect to probabilities, there are two possibilities. If ρ(b|ai , ãi−i ) ≤ ρ(b|ãi ),
then we immediately have

ṽii − ui (ai , ã
i
−i ) ≥ 1

λi

∑

j �=i

λ jα(i, j)[ρ(b|ai , ãi−i ) − ρ(b|ãi )]

because the left-hand side is nonnegative and the right-hand side is non-positive
(α(i, j) is positive due to Assumption 3). If ρ(b|ai , ãi−i ) > ρ(b|ãi ), we proceed
as follows.

We begin with (1) but now we apply it to the active user i , so that for all ai ∈ Ai

we have

vi = (1 − δ)ui (ã
i ) + δ

[
ρ(g|ãi )γi (g) + ρ(b|ãi )γi (b)

]

≥ (1 − δ)ui (ai , ã
i
−i ) + δ

[
(ρ(g|ai , ãi−i )γi (g) + ρ(b|ai , ãi−i )γi (b)

]

Rearranging yields

γi (g) − γi (b) ≥
[
1 − δ

δ

][
ui (ai , ã

i
−i ) − ui (ã

i )

ρ(b|ai , ãi−i ) − ρ(b|ãi )

]

Because continuationpayoffs are inV ,which lies in the hyperplane H , the continuation
payoffs for the active user can be expressed in terms of the continuation payoffs for
the inactive users as

γi (y) = 1

λi

⎡

⎣1 −
∑

j �=i

λ jγ j (y)

⎤

⎦

Hence,

γi (g) − γi (b) = − 1

λi

∑

j �=i

λ j [γ j (g) − γ j (b)]
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Applying the incentive compatibility constraints for the inactive users implies that for
each a j ∈ A(i, j), we have

γ j (g) − γ j (b) ≥
[
1 − δ

δ

][
u j (a j , ã

i
− j ) − u j (ã

i )

ρ(b|a j , ã
i
− j ) − ρ(b|ãi )

]

In particular,

γ j (g) − γ j (b) ≥
[
1 − δ

δ

]

α(i, j)

and hence

γi (g) − γi (b) ≤ − 1

λi

[
1 − δ

δ

]
⎡

⎣
∑

j �=i

λ jα(i, j)

⎤

⎦

Putting these all together, canceling the factor [1− δ]/δ and remembering that we are
in the case ρ(b|ai , ãi−i ) > ρ(b|ãi ) yields

ṽii − ui (ai , ã
i
−i ) ≥ 1

λi

∑

j �=i

λ jα(i, j)[ρ(b|ai , ãi−i ) − ρ(b|ãi )]

which is the desired result. Again, if E(δ) ∩ int V �= ∅, every player i must be active
after some history to achieve some PPE payoff in int V . Hence, the above inequality
must hold for every i ∈ N . ��
Proof of Theorem 1 Theorem 1 is a straightforward consequence of Theorem 2.
Specifically, for any v ∈ int V that satisfies vi > vi for all i ∈ N , we define the
set

Vv = {v ∈ V : vi ≥ vi for each i}.

Clearly, Vv contains v. Since vi > vi for all i ∈ N , Vv has a non-empty interior.

From the definition that vi = max j �=i

(
ṽ
j
i + α( j, i)[1 − ρ(b|ã j )]

)
, we know that

vi > max j �=i ṽ
j
i , because α( j, i) > 0 (due to Assumption 3) and 1 − ρ(b|ã j ) > 0

(due to Assumption 3, we have 1 − ρ(b|ã j ) = ρ(g|ã j ) > ρ(g|ai , ã j
−i ) ≥ 0, where

ai is the action such that ui (ai , ã
j
−i ) > ui (ã

j )). Hence, Vv must be in the interior of
V .

When the sufficient conditions in Theorem 1 hold, Theorem 2 guarantees that the
set Vv is a self-generating set for any discount factor δ ≥ δ∗. Hence, the target payoff
v ∈ Vv can be achieved in a PPE for any discount factor δ ≥ δ∗. ��
Proof of Theorem 2 We first prove that the four conditions are necessary. Assume that
Vμ is a self-generating set; we verify Conditions (i)–(iv) in turn. Since we focus on μ
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that satisfies μi > max j �=i ṽ
j
i , we have Vμ ⊂ int V . Since Vμ ⊆ E(δ), E(δ) ∩ int V

must be non-empty. Hence, Propositions 1 and 2 yield Conditions (i) and (ii).
Now we derive Condition (iii). To do this, we suppose that i is active and examine

the decomposition of the inactive player j’s payoff in greater detail. Because μ j > ṽij

and v j ≥ μ j for every v ∈ Vμ, we certainly have v j > ṽij . We can write j’s incentive
compatibility condition as

v j = (1 − δ) · ṽij + δ ·
∑

y∈Y
ρ(y|ãi ) · γ j (y)

≥ (1 − δ) · u j (a j , ã
i
− j ) + δ ·

∑

y∈Y
ρ(y|a j , ã

i
− j ) · γ j (y). (4)

From the equality constraint in (4), we can solve for the discount factor δ as

δ = v j − ṽij
∑

y∈Y γ j (y)ρ(y|ãi ) − ṽij

(Note that the denominator can never be zero and the above equation is well defined,
because v j > ṽij implies that

∑
y∈Y γ j (y)ρ(y|ãi ) > ṽij .) We can then eliminate the

discount factor δ in the inequality of (4). Since v j > ṽij , we can obtain equivalent
inequalities, depending onwhether a j is a profitable or unprofitable current deviation):

– If u j (a j , ã
i
− j ) > ṽij then

v j ≤
∑

y∈Y
γ j (y)

[(

1 − v j − ṽij

u j (a j , ã
i
− j ) − ṽij

)

ρ(y|ãi )

+ v j − ṽij

u j (a j , ã
i
− j ) − ṽij

ρ(y|a j , ã
i
− j )

]

(5)

– If u j (a j , ã
i
− j ) < ṽij then

v j ≥
∑

y∈Y
γ j (y)

[(

1 − v j − ṽij

u j (a j , ã
i
− j ) − ṽij

)

ρ(y|ãi )

+ v j − ṽij

u j (a j , ã
i
− j ) − ṽij

ρ(y|a j , ã
i
− j )

]

(6)

For notational convenience, write the coefficient of γ j (g) in the above inequalities
as

ci j (a j , ã
i
− j ) �

(

1 − v j − ṽij

u j (a j , ã
i
− j ) − ṽij

)

ρ(g|ãi )

123



Efficient outcomes in repeated games with limited… 25

+
(

v j − ṽij

u j (a j , ã
i
− j ) − ṽij

)

ρ(g|a j , ã
i− j )

= ρ(g|ãi ) + (v j − ṽij )

(
ρ(g|a j , ã

i
− j ) − ρ(g|ãi )

u j (a j , ã
i
− j ) − ṽij

)

= ρ(g|ãi ) − (v j − ṽij )

(
ρ(b|a j , ã

i
− j ) − ρ(b|ãi )

u j (a j , ã
i
− j ) − ṽij

)

According to (5), if u j (a j , ã
i
− j ) > ṽij , then

ci j (a j , ã
i
− j ) · γ j (g) + [

1 − ci j (a j , ã
i
− j )
]
γ j (b) ≤ v j (7)

Since γ j (g) > γ j (b), this is true if and only if

κ+
i j · γ j (g) + (1 − κ+

i j ) · γ j (b) ≤ v j , (8)

where κ+
i j � sup{ci j (a j , ã

i
− j ) : a j ∈ A j : u j (a j , ã

i
− j ) > ṽij }. (Fulfilling the inequal-

ities (7) for all a j such that u j (a j , ã
i
− j ) > u j (ã

i ) is equivalent to fulfilling the
single inequality (8). If (8) is satisfied, then the inequalities (7) are satisfied for all
a j such that u j (a j , ã

i
− j ) > u j (ã

i ) because γ j (g) > γ j (b) and κ+
i j ≥ ci j (a j , ã

i
− j )

for all a j such that u j (a j , ã
i
− j ) > u j (ã

i ). Conversely, if the inequalities (7) are

satisfied for all a j such that u j (a j , ã
i
− j ) > u j (ã

i ) and (8) were violated, so that

κ+
i j · γ j (g) + (1 − κ+

i j ) · γ j (b) > v j , then we can find a κ ′
i j < κ+

i j such that
κ ′
i j · γ j (g) + (1 − κ ′

i j ) · γ j (b) > v j . Based on the definition of the supremum,

there exists at least a a′
j such that u j (a′

j , ã
i
− j ) > u j (ã

i ) and ci j (a′
j , ã

i
− j ) > c′

i j ,

which means that ci j (a′
j , ã

i− j ) · γ j (g) + (1− ci j (a′
j , ã

i− j )) · γ j (b) > v j . This contra-

dicts the fact that the inequalities (8) are fulfilled for all a j such that u j (a j , ã
i
− j ) >

u j (ã
i ).)

Similarly, according to (6), for all a j such that u j (a j , ã
i
− j ) < ṽij , we must have

ci j (a j , ã
i
− j )γ j (g) +

[
1 − ci j (a j , ã

i
− j )
]
γ j (b) ≥ v j .

Since γ j (g) > γ j (b), the above requirement is fulfilled if and only if

κ−
i j · γ j (g) + (1 − κ−

i j ) · γ j (b) ≥ v j ,
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where κ−
i j � inf

{
ci j (a j , ã

i
− j ):a j ∈ A j , u j (a j , ã

i
− j ) < ṽij

}
. Hence, the decomposi-

tion (4) for user j �= i can be simplified as:

ρ(g|ãi ) · γ j (g) + [1 − ρ(g|ãi )]γ j (b) = ṽij + v j − ṽij

δ

κ+
i j γ j (g) + (1 − κ+

i j ) · γ j (b) ≤ v j

κ−
i j γ j (g) + (1 − κ−

i j ) · γ j (b) ≥ v j

(9)

Keep in mind that the various continuation values γ and the expressions κ+
i j , κ

−
i j

depend on v j ; where necessary we write the dependence explicitly. Note that there
could bemany γ j (g) and γ j (b) that satisfy (9). For a given discount factor δ, we call all
the continuation payoffs that satisfy (9) feasible—but whether particular continuation
values lie in Vμ depends on the discount factor.

We assert that κ+
i j (μ j ) ≤ 0 for all i ∈ N and for all j �= i . To see this, we look at

a payoff profile v̂i defined as

v̂ij =
{

μ j if j �= i
1
λi

(
1 −∑

k �=i λkμk

)
if j = i

.

We can prove that the payoff profile v̂i indeed lies in Vμ. In fact, the desired payoff
profile v̂i is the maximizer of the following optimization problem: maxv∈Vμ vi . Since
Vμ is compact, the solution to the optimization problem maxv∈Vμ vi exists. Suppose
that the solution is v∗ �= v̂i , namely there exists a j �= i such that v∗

j > μ j . Then, we
can define a vector v′ with a slightly lower payoff for player j and a slightly larger
payoff for player i , namely

v′
j = v∗

j − ε, v′
i = v∗

i + λ j

λi
ε, v′

k = v∗
k , ∀k �= i, j.

Clearly, we have v′ ∈ H . Since Vμ ⊂ intV , we can find a small enough ε such that
v′ ∈ V and that v′

j ≥ μ j . Hence, v′ is in Vμ and has a higher payoff for player i . This
is contradictory to the fact that v∗ is the solution to the problem maxv∈Vμ vi . Hence,
the maximizer of maxv∈Vμ vi must be v̂i . Therefore, we must have v̂i ∈ Vμ.

Since v̂i ∈ Vμ, the payoff profile v̂i must be decomposable. Observe that in the
payoff profile v̂i , all the players j �= i get the lowest possible payoffs μ j in Vμ,
and player i gets the highest possible payoff in Vμ. As a result, v̂i is necessarily
decomposed by ãi . We look at the following constraint for player j �= i in (9):

κ+
i j γ j (g) + (1 − κ+

i j ) γ j (b) ≤ μ j .

Suppose that κ+
i j (μ j ) > 0. Since player j has a currently profitable deviation from

ãi , we must set γ j (g) > γ j (b). Then, to satisfy the above inequality, we must have
γ j (b) < μ j . In other words, when κ+

i j (μ j ) > 0, all the feasible continuation payoffs
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of player j must be outside Vμ. This contradicts the fact that Vμ is self-generating so
the assertion follows.

The definition of κ+
i j (μ j ) and the fact that κ+

i j (μ j ) ≤ 0 entail that

κ+
i j (μ j ) = sup

a j∈A(i, j)

{

ρ(g|ãi ) − (μ j − ṽij )

[
ρ(b|a j , ã

i
− j ) − ρ(b|ãi )

u j (a j , ã
i
− j ) − ṽij

]}

= ρ(g|ãi ) − (μ j − ṽij ) inf
a j∈A(i, j)

[
ρ(b|a j , ã

i
− j ) − ρ(b|ãi )

u j (a j , ã
i
− j ) − ṽij

]

= ρ(g|ãi ) − (μ j − ṽij )

⎡

⎢
⎢
⎣

1

supa j∈A(i, j)

(
u j (a j ,ã

i− j )−ṽij

ρ(b|a j ,ã
i− j )−ρ(b|ãi )

)

⎤

⎥
⎥
⎦

= ρ(g|ãi ) − (μ j − ṽij )

[
1

α(i, j)

]

≤ 0

This provides a lower bound on μ j :

μ j ≥ ṽij + α(i, j)ρ(g|ãi ) = ṽij + α(i, j)[1 − ρ(b|ãi )]

This bound must hold for every i ∈ N and every j �= i . Hence, we have

μ j ≥ max
i �= j

(
ṽij + α(i, j)[1 − ρ(b|ãi )]

)

which is Condition (iii).
Now, we derive Condition (iv), the necessary condition on the discount factor. The

minimum discount factor δμ required for Vμ to be a self-generating set solves the
optimization problem

δμ = max
v∈Vμ

δ subject to v ∈ B(Vμ, δ)

where B(Vμ, δ) is the set of payoff profiles that can be decomposed on Vμ under
discount factor δ. Since B(Vμ; δ) = ∪i∈NB(Vμ, δ, ãi ), where B(Vμ, δ, ãi ) is the set
of payoff profiles that can be decomposed on Vμ by ãi under discount factor δ, the
above optimization problem can be reformulated as

δμ = max
v∈Vμ

min
i∈N δ subject to v ∈ B(Vμ, δ, ãi ). (10)

To solve the optimization problem (10), we explicitly express the constraint v ∈
B(Vμ, δ, ãi ) using the results derived above.

Some intuition may be useful. Suppose that i is active and j is an inactive player.
Recall that player j’s feasible γ j (g) and γ j (b) must satisfy (9). There are many
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Decomposition equality

IC constraint
(currently profitable deviation)

IC constraint
(currently unprofitable deviation)

Feasible
continuation
payoffs

Fig. 5 Illustrations of the feasible continuation payoffs when κ+
i j ≤ 0. γ̄ j = 1

λ j

(
1 −∑

k �= j λkμk

)

γ j (g) and γ j (b) that satisfy (9). In Fig. 5, we show the feasible continuation payoffs
that satisfy (9) when κ+

i j (v j ) ≤ 0. We can see that all the continuation payoffs on
the heavy line segment are feasible. The line segment is on the line that represents

the decomposition equality ρ(g|ãi ) · γ j (g) + (1 − ρ(g|ãi )) · γ j (b) = ṽij + v j−ṽij
δ

and is bounded by the IC constraint on currently profitable deviations κ+
i j · γ j (g) +

(1 − κ+
i j ) · γ j (b) ≤ v j and the IC constraint on currently unprofitable deviations

κ−
i j · γ j (g) + (1 − κ−

i j ) · γ j (b) ≥ v j . Among all the feasible continuation payoffs,
denoted γ ′(y), we choose the one, denoted γ ∗(y), such that for all j �= i , γ ∗

j (g) and
γ ∗
j (b) make the IC constraint on currently profitable deviations in (9) binding. This is

because under the same discount factor δ, if there is any feasible continuation payoff
γ ′(y) in the self-generating set, the one that makes the IC constraint on currently
profitable deviations binding is also in the self-generating set. The reason is that, as
can be seen from Fig. 5, the continuation payoff γ ∗

j (y) that makes the IC constraint
binding has the smallest γ ∗

j (g) = min γ ′
j (g) and the largest γ ∗

j (b) = max γ ′
j (b).

Formally, we establish the following Lemma. ��

Lemma 1 Fix a payoff profile v and a discount factor δ. Suppose that v is decomposed
by ãi . If there are any feasible continuation payoffs γ ′(g) ∈ Vμ and γ ′(b) ∈ Vμ that
satisfy (9) for all j �= i , then there exist feasible continuation payoffs γ ∗(g) ∈ Vμ

and γ ∗(b) ∈ Vμ such that the IC constraint on currently profitable deviations in (9)
is binding for all j �= i .

Proof Given feasible continuation payoffs γ ′(g) ∈ Vμ and γ ′(b) ∈ Vμ, we construct
γ ∗(g) ∈ Vμ and γ ∗(b) ∈ Vμ that are feasible and make the IC constraint on currently
profitable deviations in (9) binding for all j �= i .
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First, define γ ∗
j (g) and γ ∗

j (b), ∀ j �= i as the solutions to the decomposition equality
and the binding IC constraint on currently profitable deviations in (9):

ρ(g|ãi ) · γ j (g) + [1 − ρ(g|ãi )]γ j (b) = ṽij + v j − ṽij

δ

κ+
i j γ j (g) + (1 − κ+

i j ) · γ j (b) = v j

Wehave shown that κ+
i j ≤ 0. Hence, γ ∗

j (g) and γ ∗
j (g) exist and are unique. In addition,

we have
[
ρ(g|ãi ) · γ ∗

j (g) + [1 − ρ(g|ãi )]γ ∗
j (b)

]
−
[
κ+
i j γ ∗

j (g) + (1 − κ+
i j ) · γ ∗

j (b)
]

=
[
ρ(g|ãi ) − κ+

i j

]
·
[
γ ∗
j (g) − γ ∗

j (b)
]

= (v j − ṽij ) ·
(
1

δ
− 1

)

> 0

⇒
[
ρ(g|ãi ) − κ+

i j

]
·
[
γ ∗
j (g) − γ ∗

j (b)
]

> 0

⇒ γ ∗
j (g) > γ ∗

j (b)

Second, we show that γ ∗
j (g) and γ ∗

j (b) must satisfy the IC constraint on currently
unprofitable deviations in (9):

κ−
i j γ j (g) + (1 − κ−

i j ) · γ j (b) ≥ v j

Since there exist feasible γ ′
j (g) and γ ′

j (b), and since we have shown that γ ′
j (g) >

γ ′
j (b), we have

κ−
i j γ ′

j (g) + (1 − κ−
i j ) · γ ′

j (b) ≥ κ+
i j γ ′

j (g) + (1 − κ+
i j ) · γ ′

j (b)

⇒
[
κ−
i j − κ+

i j

]
·
[
γ ′
j (g) − γ ′

j (b)
]

≥ 0

⇒ κ−
i j ≥ κ+

i j

Hence, we must have

κ−
i j γ ∗

j (g) + (1 − κ−
i j ) · γ ∗

j (b) ≥ κ+
i j γ ∗

j (g) + (1 − κ+
i j ) · γ ∗

j (b) = v j

Finally, we show that γ ∗(y) ∈ Vμ. For this, we need to prove that γ ∗
j (g) ≤ γ ′

j (g)
and γ ∗

j (b) ≥ γ ′
j (b). We prove this by contradiction. Suppose that there exist γ ′

j (g) and
γ ′
j (b) that satisfy (9) and γ ′

j (g) = γ ∗
j (g)− ζ with ζ > 0. Based on the decomposition

equality, we have

γ ′
j (b) = γ ∗

j (b) +
(

ρ(g|ãi )
1 − ρ(g|ãi )

)

ζ
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We can see that the IC constraint on currently profitable deviations is violated:

κ+
i j γ ′

j (g) + (1 − κ+
i j ) γ ′

j (b)

= κ+
i j γ ∗

j (g) + (1 − κ+
i j ) γ ∗

j (b) +
[

−κ+
i j ζ + (1 − κ+

i j )

(
ρ(g|ãi )

1 − ρ(g|ãi )

)

ζ

]

= v j + (1 − κ+
i j )

[
ρ(g|ãi )

1 − ρ(g|ãi ) − κ+
i j

1 − κ+
i j

]

ζ

> v j

where the last inequality results from κ+
i j ≤ 0. Hence, we have γ ∗

j (g) ≤ γ ′
j (g) and

γ ∗
j (b) ≥ γ ′

j (b) for all γ
′
j (g) and γ ′

j (b) that satisfy (9).
Now we can prove that γ ∗(y) ∈ Vμ. For this, we need to show that γ ∗

j (g) ≥ μ j

and γ ∗
j (b) ≥ μ j for all j ∈ N . For j �= i , we have γ ∗

j (g) ≥ γ ∗
j (b) ≥ γ ′

j (b) ≥ μ j .
For i , we have

γ ∗
i (g) = 1

λi

⎛

⎝1 −
∑

j �=i

λ jγ
∗
j (g)

⎞

⎠ ≥ 1

λi

⎛

⎝1 −
∑

j �=i

λ jγ
′
j (g)

⎞

⎠ = γ ′
i (g) ≥ μi

This proves the lemma. ��
Using this Lemma, we can calculate the continuation payoffs of the inactive player

j �= i :

γ j (g) =
( 1

δ
(1 − κ+

i j ) − [1 − ρ(g|ãi )])v j − ( 1
δ

− 1)(1 − κ+
i j )ṽ

i
j

ρ(g|ãi ) − κ+
i j

= v j

δ
−
(
1 − δ

δ

)

ṽij +
(
1 − δ

δ

)

[1 − ρ(g|ãi )]α(i, j),

γ j (b) =
[
ρ(g|ãi ) − 1

δ
κ+
i j

]
v j + ( 1

δ
− 1)κ+

i j ṽij

ρ(g|ãi ) − κ+
i j

= v j

δ
−
(
1 − δ

δ

)

ṽij −
(
1 − δ

δ

)

ρ(g|ãi )α(i, j).

The active player’s continuation payoffs can be determined based on the inactive
players’ continuation payoffs since γ (y) ∈ V . We calculate the active player i’s
continuation payoffs as

γi (g) = vi

δ
−
(
1 − δ

δ

)

ṽii −
(
1 − δ

δ

)

[1 − ρ(g|ãi )] 1
λi

∑

j �=i

λ jα(i, j),

γi (b) = vi

δ
−
(
1 − δ

δ

)

ṽii +
(
1 − δ

δ

)

ρ(g|ãi ) 1
λi

∑

j �=i

λ jα(i, j)
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Hence, the constraint v ∈ B(Vμ, δ, ãi ) on discount factor δ is equivalent to

γ (y) ∈ Vμ for all y ∈ Y ⇔ γi (y) ≥ μi for all i ∈ N , y ∈ Y

Since κ+
i j (μ j ) ≤ 0, we have γ j (y) ≥ v j for all y ∈ Y , which means that γ j (y) ≥ μ j

for all y ∈ Y . Hence, we only need the discount factor to have the property that
γi (y) ≥ μi for all y ∈ Y . Since γi (g) < γi (b), we need γi (g) ≥ μi , which leads to

δ ≥ 1

1 + λi (vi − μi )/
[
λi (ṽ

i
i − vi ) +∑

j �=i λ j · (1 − ρ(g|ãi ))α(i, j)
] .

Hence, the optimization problem (10) is equivalent to

δ(μ) = max
v∈Vμ

min
i∈N

xi (v) (11)

where

xi (v) � 1

1 + λi (vi − μi )/
(
λi (ṽ

i
i − vi ) +∑

j �=i λ j [1 − ρ(g|ãi )]α(i, j)
)

Since xi (v) is decreasing in vi , the payoff v∗ thatmaximizesmini∈N xi (v)must satisfy
xi (v∗) = x j (v∗) for all i and j . Now we find the payoff v∗ such that xi (v∗) = x j (v∗)
for all i and j .

Define

z �
λi (v

∗
i − μi )

λi (ṽ
i
i − v∗

i ) +∑
j �=i λ j [1 − ρ(g|ãi )]α(i, j)

Then, we have

λi (1 + z)v∗
i = λi (μi + zṽii ) − z

∑

j �=i
λ j [1 − ρ(g|ãi )]α(i, j)

from which it follows that

z =
1 −∑

i
λiμi

∑

i

(

λi ṽ
i
i + ∑

j �=i
λ j [1 − ρ(g|ãi )]α(i, j)

)

− 1

Hence, the minimum discount factor is δ(μ) = 1
1+z ; substituting the definition of z

yields Condition (iv). This completes the proof that these Conditions 1–4 are necessary
for Vμ to be a self-generating set.

It remains to show that these necessary Conditions are also sufficient. Specifically,
we aim to show that under Conditions (i)–(iv), we can decompose each payoff profile
v ∈ Vμ.
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For convenience, we summarize how we decompose any v ∈ Vμ as follows. We
first find the active player i according to

i = max
j

{

argmax
j∈N d j (v)

}

,

where

d j (v) = λ j [v j − μ j ]
λ j [ṽ j

j − v j ] +∑
k �= j λk α( j, k)ρ(b|ã j )

.

Then, we assign the continuation payoff vectors γ (y) as follows:

γi (g) = ṽii + (1/δ)(vi (t) − ṽii ) − (1/δ − 1)(1/λi )
∑

j �=i

λ jα(i, j)ρ(b|ãi ),

γ j (g) = ṽij + (1/δ)(v j (t) − ṽij ) + (1/δ − 1)α(i, j)ρ(b|ãi ), ∀ j �= i,

and

γi (b) = ṽii + (1/δ)(vi (t) − ṽii ) + (1/δ − 1)(1/λi )
∑

j �=i

λ jα(i, j)ρ(g|ãi ),

γ j (b) = ṽij + (1/δ)(v j (t) − ṽij ) − (1/δ − 1)α(i, j)ρ(g|ãi ), ∀ j �= i.

We need to verify that under Conditions (i)–(iv), the above continuation payoff
vectors γ (g) and γ (b) satisfy (1) the decomposition equalities, (2) the incentive com-
patibility constraints, and (3) that γ (g) ∈ Vμ and γ (b) ∈ Vμ.

It is straightforward to check that the decomposition equalities are satisfied. The
incentive compatibility constraints for the inactive players j reduce to Condition (i),
and those for the active player i reduce to Condition (ii).

We proceed to verify that γ (g) ∈ Vμ and γ (b) ∈ Vμ. It is straightforward to verify
that γ (g) ∈ V and γ (b) ∈ V . We only need to show γ j (g) ≥ μ j and γ j (b) ≥ μ j for
all j ∈ N . Since α(i, j) > 0, we can observe that γ j (g) > γ j (b) for all j �= i and
γi (g) < γi (b). Hence, it suffices to show γ j (b) ≥ μ j for all j �= i and γi (g) ≥ μi .

For any inactive player j , we have

γ j (b) ≥ μ j

⇔ ṽij + (1/δ)(v j (t) − ṽij ) − (1/δ − 1)α(i, j)ρ(g|ãi ) ≥ μ j

⇔ (1/δ)v j (t) − μ j ≥ (1/δ − 1)ṽij + (1/δ − 1)α(i, j)ρ(g|ãi )
⇐ (1/δ)μ j − μ j ≥ (1/δ − 1)ṽij + (1/δ − 1)α(i, j)ρ(g|ãi )
⇔ μ j ≥ ṽij + α(i, j)ρ(g|ãi )
⇐ Condition (iii).
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For the active player i , we have

γi (g) ≥ μi

⇔ ṽii + (1/δ)(vi (t) − ṽii ) − (1/δ − 1)(1/λi )
∑

j �=i

λ jα(i, j)ρ(b|ãi ) ≥ μi

⇔ (1/δ)

⎡

⎣vi (t) − ṽii − (1/λi )
∑

j �=i

λ jα(i, j)ρ(b|ãi )
⎤

⎦

≥ μi − ṽii − (1/λi )
∑

j �=i

λ jα(i, j)ρ(b|ãi )

⇔ δ ≥ ṽii − vi (t) + (1/λi )
∑

j �=i λ jα(i, j)ρ(b|ãi )
ṽii − μi + (1/λi )

∑
j �=i λ jα(i, j)ρ(b|ãi )

⇔ δ ≥ 1

1 + λi (vi (t) − μi )/
[
λi (ṽ

i
i − vi (t)) +∑

j �=i λ jα(i, j)ρ(b|ãi )
]

⇐ δμ ≥ 1

1 + λi (vi (t) − μi )/
[
λi (ṽ

i
i − vi (t)) +∑

j �=i λ jα(i, j)ρ(b|ãi )
]

⇔ δμ ≥ 1

1 + di (v(t))
.

According to the first half of the proof about necessity, the above δμ in Condition (iv)
is calculated by solving the optimization problem (11), which is equivalent to

δμ = max
v∈Vμ

min
j∈N

1

1 + d j (v)
.

From the above, we have δμ ≥ min j∈N 1
1+d j (v)

for any v ∈ Vμ. Under the given v,

the active player i is chosen such that di (v) is the largest (i.e., 1
1+di (v)

is the smallest).

Hence, we have δμ ≥ min j∈N 1
1+d j (v)

= 1
1+di (v)

. This yields γi (g) ≥ μi . ��
Proof of Theorem 3 Propositions 1, 2 show that Conditions (i), (ii) in Theorem 2 are
necessary conditions for the existence of an efficient PPE for any discount factor.
Suppose therefore that Conditions (i), (ii) are satisfied. It is easily checked that the
following definitions ofμ∗

1, μ
∗
2 guarantee that Condition (iii) of Theorem2 is satisfied:

μ∗
1 = ṽ21 + α(2, 1)

[
1 − ρ(b|ã2)

]
, μ∗

2 = ṽ12 + α(1, 2)
[
1 − ρ(b|ã1)

]
.

Finally, if

δ ≥ δ∗ �

⎛

⎝1 + 1 − λ1μ
∗
1 − λ2μ

∗
2

∑
i

[
λi ṽ

i
i + λ−iα(i,−i)ρ(b|ãi )

]
− 1

⎞

⎠

−1

,
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then Condition (iv) of Theorem 2 is also satisfied. It follows from Theorem 2 that for
each δ ≥ δ∗, Vμ∗ is a self-generating set, so every target vector in Vμ∗ can be achieved
in a PPE. Hence, E(δ) ⊃ Vμ∗ for every δ ∈ [δ∗, 1). To see that Vμ∗ = E(δ) for every
δ ∈ [δ∗, 1), simply note that for each δ the set E(δ) is closed and convex, hence an
interval, hence of the form Vμ for some μ. However, Condition (iii) of Theorem 2
guarantees that μ ≥ μ∗ which completes the proof. ��
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