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Abstract—Recent years have seen an explosion in wireless video
communication systems. Optimization in such systems is crucial –
but most existing methods intended to optimize the performance
of multi-user wireless video transmission are inefficient. Some
works (e.g., Network Utility Maximization (NUM)) are myopic:
they choose actions to maximize instantaneous video quality while
ignoring the future impact of these actions. Such myopic solutions
are known to be inferior to foresighted solutions that optimize the
long-term video quality. Alternatively, foresighted solutions such
as rate-distortion optimized packet scheduling focus on single-user
wireless video transmission, while ignoring the resource allocation
among the users. In this paper, we propose a general framework of
foresighted resource allocation amongmultiple video users sharing
a wireless network. Our framework allows each user to flexibly
choose individual cross-layer strategies. Our proposed resource
allocation is optimal in terms of the total payoff (e.g., video
quality) of the users. A key challenge in developing foresighted
solutions for multiple video users is that the users' decisions are
coupled. To decouple the users' decisions, we adopt a novel dual
decomposition approach, which differs from the conventional
optimization solutions such as NUM, and determines foresighted
policies. Specifically, we propose an informationally-decentralized
algorithm in which the network manager updates state- and
user-dependent resource “prices” (i.e., the dual variables associ-
ated with the resource constraints), and the users make individual
packet scheduling decisions based on these prices. Because a priori
knowledge of the system dynamics is almost never available at
run-time, the proposed solution can learn online while performing
the foresighted optimization. Simulation results show 7 dB and
3 dB improvements in Peak Signal-to-Noise Ratio (PSNR) over
myopic solutions and existing foresighted solutions, respectively.

Index Terms—Cross-layer optimization, foresighted optimiza-
tion, Markov decision processes, multi-user resource allocation,
multi-user wireless communication, network utility maximization,
reinforcement learning, wireless video.

I. INTRODUCTION

V IDEO applications, such as video streaming, video
conferencing, remote teaching, surveillance etc., have

become the major applications deployed over the current cel-
lular networks and wireless Local Area Networks (LANs). The
bandwidth-intensive and delay-sensitive video applications re-
quire efficient allocation of network resources (e.g., bandwidth
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in 4G LTE networks or temporal transmission opportunity in
wireless LANs) among the users, and efficient scheduling of
each user's video packets based on its allocated resources.
Most existing solutions for multi-user wireless video trans-

mission are myopic [4]–[9], meaning that these joint resource
allocation and packet scheduling solutions are designed to
maximize the instantaneous1video quality (i.e., the average
distortion impact of the packets sent within the next trans-
mission opportunity or time interval). These solutions can
be interpreted as maximizing the instantaneous video quality
by repeatedly and independently solving Network Utility
Maximization (NUM) problems over time. However, current
(resource allocation and packet scheduling) decisions impact
the future system performance, which is not taken into consid-
eration by the repeated NUM solutions. Optimal solutions for
multi-user resource allocation and packet scheduling need to be
formalized as sequential decisions given (unknown) dynamics
(i.e., time-varying channel conditions and video traffic charac-
teristics, dependencies across video packets etc.). Hence, the
repeated NUM solutions are myopic and inferior to foresighted
solutions that maximize the long-term video quality.
To address this limitation, several foresighted solutions have

been proposed for packet scheduling; see e.g., [10]–[16]. How-
ever, these packet scheduling solutions focus on the sequen-
tial decision making of a single foresighted video user and do
not consider the coupling among users. In multi-user wireless
networks, the solutions developed for a single user have been
shown to be highly inefficient [17]2, since they ignore the fact
that users are sharing the same wireless resource, and hence,
their decisions over time are coupled. A simple solution to per-
form multi-user resource allocation was proposed in [4]. How-
ever, this allocation is performed statically, possibly before run-
time, and as shown in [17], such static resource allocation is
suboptimal compared to solutions that dynamically allocate re-
sources among multiple users given the users' video traffic and
channel characteristics, which are time-varying and often un-
known before run-time.
In this paper, we propose a general methodology for per-

forming foresighted resource allocation among multiple video
users sharing the common resources of a wireless network. Our
framework allows each user to flexibly choose individual cross-
layer strategies. Our proposed resource allocation is optimal,
i.e., it maximizes the total payoff (e.g., video quality) of the
users. We consider multiple users transmitting delay-sensitive

1We will define instantaneous and long-term video quality rigorously in Sec-
tion III.

2Thework [17] is the only one that develops foresighted solutions for multiple
video users. We will discuss the differences between our work and [17] in detail
in Section II.
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video streams over a 4G cellular uplink network3. In such net-
works, the base station (BS) needs to decide how to allocate
wireless resources (i.e., bandwidth) among the multiple video
users. In our proposed solution, the BS does not directly al-
locate the resources; instead, it mediates the resource alloca-
tion by charging each user a state- and user-dependent resource
“price”4. Given the price, each user determines its own optimal
packet scheduling. Hence, our approach is decentralized and en-
ables users to make optimal decisions locally, in an informa-
tionally-decentralized manner, based on their own private in-
formation and the resource price. We propose a low-complexity
algorithm in which the BS updates the resource prices using
a stochastic subgradient method based on the users' resource
usage while the users make foresighted decisions based on these
prices. We prove that the algorithm can converge to the optimal
prices, under which the users' optimal decisions maximize the
long-term total payoff of the users. Moreover, our solution also
allows to impose a minimum video quality guarantee for each
user (i.e., the video quality for each user needs to be higher than
a preset minimum video quality guarantee). Importantly, the BS
and the users may not have in practice the statistic knowledge of
the system dynamics (e.g., the incoming video traffic character-
istics and the time-varying channel conditions). For such sce-
narios, we propose a post-decision state (PDS) based learning
algorithm that converges to the proposed optimal solution.
Finally, at the risk of repetition, we want to emphasize that

our framework is general: the users can adopt any cross-layer
strategy that can be formulated as a general Markov decision
process (MDP) as in Section III-A. For instance, most state-of-
the-art single-user video packet scheduling schemes [10]–[16]
can be formulated in this way. Given such packet scheduling
schemes, our proposed foresighted resource allocation is op-
timal in terms of the total long-term payoff of the users.5 We
illustrate our proposed framework in Fig. 1.
The rest of the paper is organized as follows. We discuss

prior work in Section II. We describe the system model in
Section III and formulate the design problem in Section IV.
Then we propose our solution in Section V. Simulation results
in Section VI demonstrate the performance improvement of the
proposed solution. Finally, Section VII concludes the paper.

II. RELATED WORKS

A. Related Works on Video Transmission
The existing works on wireless video communications can be

classified based on various criteria. First, some works [1]–[3]
model the video traffic with a simplified model, e.g., flow-level
models using priority queues. Such a model cannot accurately
capture the heterogeneous distortion impact, delay deadlines,

3Although we focus on uplink video transmission, our work can be readily
extended to downlink video transmission, to IEEE 802.11a/e wireless LANs
(Local Area Networks) in which transmission opportunities (i.e., time slots) are
allocated among users [4], and to IEEE 802.15.4e-enabled Internet-of-Things
and machine-to-machine communications.

4Note that the “price” can be a control signal instead of the price for monetary
payment.

5Of course, different packet scheduling schemes may result in different per-
formances at the optimum.

Fig. 1. Illustration of our proposed framework. Each user can flexibly choose
any (foresighted) cross-layer optimization that can be formulated as a Markov
decision process. Under the chosen cross-layer optimization framework, our
proposed foresighted resource allocation based on state- and user-dependent
prices is optimal in terms of the total long-term payoff of the users.

and dependency of the video packets. Hence, the solution
derived based on simplified models may not perform well in
practice [16], [17].
A plethora of recent works [4]–[16] adopt packet-level

models for video traffic, but propose distinct solutions to
optimize the video quality. Some works [4]–[9] assume that
the users are myopic, namely they only maximize their in-
stantaneous video quality over a given time interval without
considering the impact of their actions on the long-term video
quality. They cast the problem in a NUM framework to max-
imize the instantaneous joint video quality of all the users,
and apply the NUM framework repeatedly when the channel
conditions or video traffic characteristics change. However,
since the users are optimizing their transmission decisions
myopically, their long-term average performance is inferior to
the performance achieved when the users are foresighted[16].
Most of the works [10]–[16] considering the foresighted deci-
sion of users focus solely on a single foresighted user making
sequential transmission decisions (e.g., packet scheduling,
retransmissions etc.). However, these single user solutions do
not discuss how to allocate resources among multiple users
as well as how this allocation is impacted by and impacts the
foresighted scheduling decisions of individual users. Static
allocations of resources, which are often assumed in the works
studying the foresighted decisions of a single user, have been
shown to be suboptimal compared to the solutions that dynam-
ically allocate resources among multiple users [17].
The only work which proposes a solution for video resource

allocation among multiple foresighted users is [17], which for-
mulates the problem as a multi-user MDP (MU-MDP). Since
this work [17] is most related to our proposed solution, we dis-
cuss the differences between them in detail. The challenge in
foresighted multi-user video transmission is that the users' de-
cisions are dynamic and coupled through the resource (e.g.,
bandwidth or time) constraints. Hence, the design problem is
much more complicated than in myopic multi-user video re-
source allocation and transmission (e.g., NUM) or in foresighted
single-user video transmission given a static or pre-determined
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TABLE I
RELATED WORKS ON VIDEO TRANSMISSION.

resource allocation. To overcome this challenge, a dual decom-
position method has been proposed in [17], which removes the
resource constraints in all the states and adds them to the ob-
jective functions in the corresponding states as penalties mod-
ulated by the same Lagrangian multiplier (interpreted as the
price of resources).6 However, such a solution is in general sub-
optimal (i.e., there is a positive duality gap) for the following
reason. Since it uses the same Lagrangian multiplier (i.e., a uni-
form price) for the resource constraints in all the states [17],
the uniform price is usually set high such that the resource con-
straints in all the states are satisfied. Technically, when there
are some active constraints (i.e., constraints satisfied with strict
inequality), the complementary slackness conditions cannot be
satisfied under all the states. Hence, there will always be a du-
ality gap due to the violation of complementary slackness con-
ditions. In contrast, in our work, we use different prices for re-
source constraints under different states (e.g., under different
channel conditions). In this way, we can achieve the optimal
performance (i.e., there is no duality gap, unlike the MU-MDP
solution with uniform price in [17]).
Table I summarizes the above discussions. Note that the op-

timality shown in the last column of Table I indicates whether
the solution is optimal for the long-term network utility (i.e., the
joint long-term video quality of all the users in the network). The
existing solutions can be optimal in the corresponding models
(e.g., the solutions in [10]–[16] are optimal when there is only
one user).

B. Related Theoretical Frameworks

Single-user foresighted decision making in a dynamically
changing environment has been studied and formulated as
Markov Decision Process (MDP). As mentioned previously, the
problem of multiple video users making coupled foresighted
decisions (MU-MDPs) has been studied in [17]. However,
as we discussed before, this MU-MDP solution is based on
uniform prices and is therefore suboptimal for most multi-user
wireless video scenarios, even though it has been shown to
significantly outperform the myopic solutions.
It is worth noting that foresighted decision making in a

dynamically changing environment can also be solved using
the Lyapunov optimization framework [18]. However, the
Lyapunov optimization framework is not able to make optimal
decisions for video streaming since it disregards specific inter-
dependency and distortion impact of video traffic [19].
Table II summarizes the above discussions about existing the-

oretical frameworks. In Table VI at the end of Section V, we pro-
vide rigorous technical comparisons with existing works after
we describe our proposed solution in detail.

TABLE II
RELATED THEORETICAL FRAMEWORKS.

III. SYSTEM MODEL

We first present a general model for multi-user wireless video
transmission in 4G LTE cellular networks or IEEE 802.11a/e
wireless LANs. Our technical results hold for this general
model. Then we give an example of a detailed model as in [10],
[16], [17] as an instantiation of our general model.

A. The General Model

We consider a network with a network manager (e.g., the base
station), indexed by 0, and a set of wireless video users,
indexed by . Time is slotted at .
In the rest of the paper, we will put the user index in the su-
perscript and the time index in the subscript of variables. The
multi-user wireless video transmission system is described by
the following features:
1) States: Each user has a finite state space , from which

a state is realized and revealed to user at the beginning of
each time slot. The state may consist of several components,
such as the video traffic state and the channel state. An example
of a simplified video traffic state can be the types of video frames
(I, P, or B frame) available for transmission and the numbers of
packets in each available video frame. Note that the video traffic
in our model can come from video sequences that are either
encoded in real-time, or offline and stored in the memory before
the transmission. An example channel state can be the channel
quality reported to the application layer by the lower layers. The
network manager has a finite state space that describes the
status of the resource in the network.
2) Actions: At each state , each user chooses an action

. For example, an action can be how many packets
within each available video frame should be transmitted. We
allow the sets of actions taken under different states to be dif-
ferent, in order to incorporate the minimum video quality re-
quirements that will be discussed.
3) Payoffs: Each user has a payoff function

. The payoff function is concave in the action under
any state. A typical payoff can be the distortion impact of the
transmitted packets plus the (negative) disutility incurred by the
energy consumption in transmitting the packets.
4) State Transition: Each user 's state transition is Mar-

kovian, and can be denoted by , where
is the probability distribution over the set of states.

6There are two key differences between the dual decomposition method in
[17] and the classical dual decomposition method used in myopic optimization
such as in NUM. The first difference is that the users' objective functions are
the long-term video quality, and hence the decomposed subproblems solved by
each user are foresighted optimization problems instead of static optimization
problems as in NUM. The second one is that the update of the dual variables is
different from that in NUM since the subproblems are foresighted.
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5) Resource Constraints: Given the status of the resource
(i.e., the network manager's state ), we can write the (linear)
resource constraint as

where is the coefficient under state . When is a
vector, is a vector of the appropriate length, and
is the inner product of the two vectors.
A variety of multi-user wireless video transmission systems

can be modeled as special cases of our general model. Next, we
present a packet-level video transmission model as an example.

B. An Example Packet-Level Video Transmission Model

Packet-level video transmission models have been proposed
in a variety of related works, including [10]–[17]. In the fol-
lowing, we briefly describe the model based on [10]–[17], and
refer interested readers to [10]–[17] for more details.
We first consider a specific video user , and hence drop

the superscript before we describe the resource constraints.
The video source data is encoded using an H.264 or MPEG
video coder under a Group of Pictures (GOP) structure: the
data is encoded into a series of GOPs, indexed by ,
where one GOP consists of data units (DUs). Each DU

in GOP , denoted , is characterized by
its size (i.e., the number of packets in it), distortion
impact , delay deadline , and dependency
on the other DUs in the same GOP. The dependency among
the DUs in one GOP comes from encoding techniques such as
motion estimation/compensation. In general, if depends
on , we have and , namely should
be decoded before and has a higher distortion impact
than [16]. Note that in the case of scalable video coding,
there is no dependency among the DUs, and the following
representation of the model can be greatly simplified. We will
keep the dependency for generality in our exposition.
Among the above characteristics, the distortion impact ,

delay deadline , and the dependency are deterministic and
fixed for the same DUs across different GOPs (e.g., )
[16], [17]. As in [17], the sizes of all the DUs are independent
random variables, and that the sizes of the th DUs in different
GOPs have the same distribution.
1) States: Each user's state consists of the traffic state and

the channel state . We describe the traffic state first. At time
slot , as in [10], [16], [17], we assume that the wireless user
will only consider for transmission the DUs with delay dead-
lines in the range of , where is referred to as the
scheduling time window (STW). Following the model in [16],
[17], at time slot , we introduce context to represent the set
of DUs that are considered for transmission, i.e., whose delay
deadlines are within the range of . We denote the con-
text by . Since the GOP structure
is fixed, the transition from context to is deterministic.
An illustration of the context is given in Fig. 2.
Given the current context , we let denote the number

of packets in the buffer associated with a DU in . We denote
the buffer state of the DUs in by .

Fig. 2. Illustration of GOP (group of pictures), DU (data unit), and the context.
Since the scheduling time window is , the contexts in different time
slots are , ,

, , and
so on.

The traffic state at time slot is then , where
the context represents which DUs are available for transmis-
sion, and the buffer state represents how many packets each
available DU has left in the buffer .
Next we describe the channel state . At each time slot , the

wireless user experiences a channel condition , where
is the finite set of possible channel conditions. We assume that
the wireless channel is slow-fading (i.e., remains the same in one
time slot), and that the channel condition can be modeled as
a finite-state Markov chain [21].
In summary, the state of a user at each time slot is

, which includes the current context, buffer state and
channel state.
2) (Packet Scheduling) Actions: At each time slot , the user

decides how many packets should be transmitted from each DU
in the current context. The decision is represented by

, where is the
amount of packets transmitted from the DU.
3) Payoffs: As in [16], we consider the following instanta-

neous payoff at each time slot :7

(1)

where the first term is the instantaneous
video quality, namely the distortion reduction obtained by trans-
mitting the packets from the DUs in the current context, and the
second term represents the disutility of the en-
ergy consumption by transmitting the packets. Since the packet
scheduling action is a vector with nonnegative components,
we have , namely is the total
number of transmitted packets. As in [16], the energy consump-
tion function is assumed to be convex in the total
number of transmitted packets given the channel condi-
tion . An example of such a function can be

, where is the number of bits in one packet
[20]. The payoff function is a tradeoff between the distortion re-
duction and the energy consumption, where the relative impor-
tance of energy consumption compared to distortion reduction

7The payoff function can be easily extended within our framework to include
additional features in themodel. For example, when there are packet loss, we can
modify the first term to be the expected distortion reduction given the packet loss
rate, or modify the second term to consider the additional energy consumption
associated with packet retransmission.
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is characterized by the tradeoff parameter . In the simula-
tion, we will set different values for to illustrate the tradeoff
between the distortion reduction and energy consumption.
4) The Resource Constraint: In this paper, we consider a 4G

cellular network, where there are wireless video users trans-
mitting to the BS indexed by 0. The users access the channels
in a FDMA (frequency-division multiple access) manner. The
total bandwidth is shared by the users.
We assume that each user uses adaptive modulation and

coding (AMC) based on its channel condition. In other words,
each user chooses a data rate under the channel state .
Note that the rate selection is done by the physical layer and is
not a decision variable in our framework. Then as in [2], [3], we
have the following resource constraint:

(2)

where is the bandwidth needed for transmit-
ting the amount of bits given the data rate .
In this model, the network manager's state is then the col-

lection of channel states, namely . The in-
formation about the channel states is fed back from the users
to the BS. We can write the constraint compactly as the linear
constraint with

and .

IV. THE DESIGN PROBLEM
Each user makes decisions based on its state . Hence,

each user 's strategy can be defined as a mapping
, where is the set of actions available under

state . We allow the set of available actions to depend on the
state, in order to capture the minimum video quality guarantee.
For example, we may have the following minimum distortion
impact reduction requirement for user at any time:

The users aim to maximize their expected long-term payoff.
Given its initial state , each user 's strategy induce a prob-
ability distribution over the sequences of states , and
hence a probability distribution over the sequences of instanta-
neous payoffs . Taking expectation with respect to the
sequences of payoffs, we have user 's long-term payoff given
the initial state as

(3)

where is the discount factor.
The design problem can be formulated as

(4)

Note that the design problem (4) is a weakly-coupled MU-MDP
as defined by [22]. It is a MU-MDP because there are mul-
tiple users making foresighted decisions. The MU-MDP is cou-
pled, because the users influence each other through the resource
constraints (namely the choice of one user's action depends on
the choices of the other users). However, it is weakly-coupled,
because the coupling is through the resource constraints only,
and because one user's instantaneous payoff is not af-
fected by the other users' actions . It is this weak coupling that
enables us to decompose the multi-user problem into multiple
single-user problems through prices. Such a decomposition of
weakly-coupled MU-MDPs has been studied in a general set-
ting [22] and in wireless video transmission [17], both adopting
a dual decomposition approach based on uniform price (i.e., the
same Lagrangian multiplier for the resource constraints under
all the states).
Note also that we sum up the network utility

under all the initial states . This can be interpreted as
the expected network utility when the initial state is uniformly
distributed. The optimal stationary strategy profile that maxi-
mizes this expected network utility will also maximize the net-
work utility given any initial state.
The design problem (4) is very challenging, and has never

been solved optimally. To better understand this, let us as-
sume that a central controller would exist which knows the
complete information of the system (i.e., the states, the state
transitions, the payoff functions) at each time step. Then,
this central controller can solve the above problem (4) as a
centralized single-user MDP (e.g., using well-known Value
Iteration or Policy Iteration methods) and obtain the solution
to the design problem and the optimal value function .
However, the multi-user wireless video system we discussed
is inherently informationally-decentralized and there is no en-
tity in the network that possesses the complete information.
Moreover, the computational complexity of solving (4) by
a single entity is prohibitively high. Hence, our goal is to
develop an optimal decentralized algorithm that converges to
the optimal solution.

V. OPTIMAL FORESIGHTED VIDEO TRANSMISSION

In this section, we show how to determine the optimal fore-
sighted video transmission policies. We propose an algorithm
that allows each entity to make decisions based on its local in-
formation and the limited information exchange between the BS
and the users. Specifically, in each time slot, the BS sends re-
source prices to each user, and the users send their total num-
bers of packets to transmit to the BS. The BS keeps updating the
resource prices based on the resource usage by the users, and ob-
tains the optimal resource prices based on which the users' op-
timal individual decisions achieve the optimal network utility.
An overview of the main results and the structure of the pro-
posed solution is given in Fig. 3.

A. Decoupling of the Users' Decision Problems

Each user aims to maximize its own long-term payoff
subject to the constraints. Specifically, given the

other users' strategies and
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Fig. 3. Illustration of the resource allocation and packet scheduling in the pro-
posed solution.

states , each user solve the
following long-term payoff maximization problem:

(5)

Assuming that the user knows all the information (i.e., the other
users' strategies and states ), user 's optimal value func-
tion should satisfy the following:

(6)

Note that the above equations would be the Bellman equation, if
user knew the other users' strategies and states and the
BS's state (i.e., the channel states of all the users). However,
such information is never known to a particular user. Without
such information, one user cannot solve the decision problem
above because the resource constraint contains unknown vari-
ables. Hence, we need to separate the influence of the other
users' decisions from each user's decision problem.
One way to decouple the interaction among the users is to

remove the resource constraint and add it as a penalty to the
objective function. Denote the Lagrangian multiplier (i.e., the
“price”) associated with the constraint under state as .
Then the penalty at state is

Since the term is a constant for user
, we only need to add to each user 's
objective function. We define . Then
we can rewrite user 's decision problem as

(7)

TABLE III
DISTRIBUTED ALGORITHM TO COMPUTE THE OPTIMAL STRATEGY AT TIME .

By contrasting (7) with (6), we can see that given the price ,
each user canmake decisions based only on its local information
since the resource constraint is eliminated. Note, importantly,
that the above decision problem (7) for each user is different
from that in [17] with uniform price. This can be seen from the
term in (7), where the price is user-specific and
depends on the state, while the uniform price in [17] is a con-
stant . The decision problem (7) is also different from the sub-
problem resulting from dual decomposition in NUM, because it
is a foresighted optimization problem that aims to maximize the
long-term payoff. This requires a different method to calculate
the optimal Lagrangian multiplier than that in NUM.

B. Optimal Decentralized Video Transmission Strategy

For the general model described in Section III-A, we propose
an algorithm used by the BS to iteratively update the prices and
by the users to update their optimal strategies. The algorithm
will converge to the optimal prices and the optimal strategy pro-
file that achieves the minimum total system payoff . The al-
gorithm is described in Table III.
Theorem 1: The algorithm in Table III converges to the op-

timal strategy profile, namely

Proof: See the appendix.
We illustrate the BS's and users' updates and their informa-

tion exchange in one time slot in Fig. 4. At the beginning of
each time slot , the BS and the users exchange information
to compute the optimal resource price and the optimal actions
to take. Specifically, in each iteration , the BS updates the re-
source price . Then based on the user-specific resource price
, each user solves for the optimal individual strategy ,

and sends the BS its resource request . Then the BS
updates the prices based on the users' resource requests using the
stochastic subgradient method, which can be performed easily.
The difference from the dual decomposition in NUM is that each
user's decision problem in our work is a foresighted optimiza-
tion problem aiming to maximize the long-term, instead of in-
stantaneous, payoff. Our algorithm is also different from the al-
gorithm in [17] in that we have different prices under different
states.
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From Fig. 4, we can clearly see what information (namely
resource prices and resource requests ) is ex-
changed. The amount of information exchange is small ( ),
compared to the amount of information required by each user
to solve the decision problem (6) directly ( states plus
the strategies ). In other words, the algorithm enables the
entities to exchange a small amount ( ) of information and
reach the optimal video transmission strategy that achieves the
same performance as when each entity knows the complete in-
formation (i.e., the states and the strategies of all the entities)
about the system.

C. Optimal Packet Scheduling
In the previous subsection, we propose an algorithm of op-

timal foresighted resource allocation and packet scheduling for
the general video transmissionmodel described in Section III-A.
In the algorithm, each user's packet scheduling decision is ob-
tained by solving the Bellman (7) (see Table III). The Bellman
(7) can be solved by a variety of standard techniques such as
value iteration. However, the computational complexity of
directly applying value iteration may be high, because each
user's state contains the information of all DUs and thus each
user's state space can be very large. In the following, we show
that for the specific model described in Section III-B, we can
greatly simplify the packet scheduling decision problem. The
key simplification comes from the decomposition of each user's
packet scheduling problem with multiple DUs into multiple
packet scheduling problems with single DU. In this way, we can
greatly reduce the number of states in each single-DU packet
scheduling problem, such that the total complexity of packet
scheduling grows linearly, instead of exponentially without
decomposition, with the number of DUs.
The decomposition closely follows the decomposition of

multiple-DU packet scheduling problems proposed in [16]. The
only difference is that the decision problem (7) in our work has
an additional term due to the price, while such
a term does not exist in [16] because the single-user packet
scheduling problem is considered in [16].
Lemma 1 (Structural Result): Suppose and

. If depends on , we should schedule the
packets of before scheduling the packets of .

Proof: The proof is straightforward and similar to the
proof of [16, Lemma 1]. If depends on , then
has higher distortion impact and earlier deadline, which means
that it always achieves a higher distortion reduction to schedule
packets of . In addition, the contributions in energy con-
sumption and resource payment do not depend on which DU
the packets come from. Hence, we should always schedule the
packets of before scheduling the packets of .
Although Lemma 1 is straightforward, it greatly simplifies

the scheduling problem because we can now take advantage
of the partial ordering of the DUs. However, this still does not
solve the scheduling decision for the DUs that are not depen-
dent on each other. Next, we provides the algorithm of optimal
packet scheduling in Table IV. The algorithm decomposes the
multiple-DU packet scheduling problem into a sequence of
single-DU packet scheduling problems, and determines how
many packets to transmit for each DU sequentially. This greatly

Fig. 4. Illustration of the interaction between the BS and user (i.e., their de-
cision making and information exchange) in one period.

reduces the total computational complexity (which is linear
in the number of DUs) compared to solving the multiple-DU
packet scheduling problem directly (in which the number of
states grows exponentially withe number of DUs). The algo-
rithm is similar to [16, Algorithm 2]. The only difference is the
term .

D. Learning Unknown Dynamics

In practice, each entity may not know the dynamics of its
own states (i.e., its own state transition probabilities) or even
the set of its own states. When the state dynamics are not known
a priori, each entity cannot solve their decision problems using
the distributed algorithm in Table III. In this case, we can adapt
the online learning algorithm based on post-decision state (PDS)
in [16], which was originally proposed for single-user wireless
video transmission, to the considered deployment scenario.
The main idea of the PDS-based online learning is to learn the

post-decision value function, instead of the value function. Each
user 's post-decision value function is defined as ,
where is the post-decision state. The difference from
the normal state is that the PDS describes the status of
the system after the scheduling action is made but before the
DUs in the next period arrive. Hence, the relationship between
the PDS and the normal state is

Then the post-decision value function can be expressed in terms
of the value function as follows:
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TABLE IV
THE OPTIMAL PACKET SCHEDULING ALGORITHM.

TABLE V
THE OPTIMAL DECOMPOSED PACKET SCHEDULING

ALGORITHM WITH PDS-BASED LEARNING.

In PDS-based online learning, the normal value function and the
post-decision value function are updated in the following way:

We can see that the above updates do not require any knowl-
edge about the state dynamics. In particular, we propose the de-
composed optimal packet scheduling with PDS-based learning
in Table V. Note that the difference between the learning algo-
rithm in Table V with the algorithm assuming statistic knowl-
edge in Table IV is that we use the post-decision state value
function instead of the normal value function. It is proved in [16]
that the PDS-based online learning will converge to the optimal
value function. Hence, the distributed packet scheduling and re-
source allocation solution in Table III can be modified by letting
each user perform the packet scheduling using the PDS-based
learning in Table V.

E. Detailed Comparisons With Existing Frameworks
Since we have introduced our proposed framework, we can

provide a detailed comparison with the existing theoretical
framework. The comparison is summarized in Table VI.
First, the proposed framework reduces to the myopic opti-

mization framework (repeated NUM) when we set the discount
factor . In this case, the proposed solution reduces to the
myopic solution.
Second, the Lyapunov optimization framework is closely

related to the PDS-based online learning. In fact, it could

be considered as a special case of the PDS-based online
learning when we set the post-decision value function as

, and choose
the action that maximizes the post-decision value function at
run-time. However, the Lyapunov drift in the above post-deci-
sion value function depends only on the total number of packets
in the queue, but not on the delay deadlines, the dependency
among packets, and the channel condition. In contrast, in our
PDS-based online learning, we explicitly consider the impact of
the video traffic (i.e., delay deadlines and dependency) and the
channel condition when updating the normal and post-decision
value functions.
Finally, the key difference between our proposed framework

and the framework for MU-MDP [17] is how we penalize the
constraints . In particular, the framework in [17], if di-
rectly applied in our model, would define only one Lagrangian
multiplier for all the constraints under different states . This
in general leads to performance loss [17]. In contrast, we de-
fine different Lagrangian multipliers to penalize the constraints
under different states , and enable the proposed framework to
achieve the optimality (which is indeed the case as have been
proved in Theorem 1).

VI. SIMULATION RESULTS
We consider a wireless networkwith multiple users streaming

one of the following three video sequences, “Foreman” (CIF
resolution, 30 Hz), “Coastguard” (CIF resolution, 30 Hz),
and “Mobile” (CIF resolution, 30 Hz). We use the following
system parameters by default and will explicitly specify when
changes are made. The video sequences Foreman and Coast-
guard are encoded at a bit rate of 512 kb/s, and Mobile is
encoded at 1024 kb/s due to its higher and more complicated
video characteristics. Each GOP contains 16 frames and each
encoded video frame can tolerate a delay of 266 ms (namely
the duration of 8 frames, or half the duration of a GOP). The
length of one time slot is 10 ms, and the scheduling time
window is 266 ms. The energy consumption function is
set as [16], [17],
[20]. We quantize the continuous channel gains into 8 discrete
channel states; the details of the quantization thresholds and
representative values can be found in [16, Table II]. The ratio of
the average channel gain to noise power is
( dB) . We set the tradeoff parameter of distortion
reduction and energy consumption as . The discount
factor is .

A. Learning and Adaptation
Before comparing against the other solutions, we show that

the proposed PDS-based learning algorithm converges to the
optimal solution (namely the optimal value function is learned),
and adapts to the nonstationary dynamics in the system (for ex-
ample, tracks the optimal solution in the presence of dynamic
entry and exit of users). The optimal solution is obtained by the
proposed algorithm in Table III assuming the statistical knowl-
edge of the system dynamics. We consider a scenario with 10
users streaming the video sequence Foreman. First, we com-
pare long-term video quality (i.e., Peak Signal-to-Noise Ratio
(PSNR)) achieved by the optimal solution and that achieved
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TABLE VI
RELATIONSHIP BETWEEN THE PROPOSED AND EXISTING THEORETICAL FRAMEWORKS.

Fig. 5. Convergence of the PDS-based learning algorithm.

Fig. 6. Adapting to the dynamic entry and exit of users.

by the PDS-based learning algorithm. For illustrative purpose,
we show the convergence of the learning algorithm in terms of
long-term video quality only for two users in Fig. 5.
Next, in Fig. 6, we study how the proposed PDS-based

learning algorithm adapts to the dynamic entry and exit of
users. Specifically, a new user enters at time slot 5000, and then
two users leave at time slot 6500. We show the PSNR of one
particular user who stays in the network throughout the entire
time. We can see that the proposed solution can adapt to the
dynamic entry and exit of users, as long as it does not happen
too frequently. Note also that under an entry or exit of users, the
solutions converge faster, compared to the initial convergence
starting from time 0. This is because the initial point in the new
convergence process is already good (i.e., we have a “warm
start”).

TABLE VII
RESOURCE ALLOCATION AND PACKET SCHEDULING

USED IN DIFFERENT SOLUTIONS.

B. Comparison Against Existing Solutions
Now we compare against the myopic solution (i.e., re-

peated NUM) [4]–[9], the Lyapunov optimization solution
(adapted from [18] for video transmission), and the MU-MDP
solution [17]. In Table VII, we summarize the resource allo-
cation and packet scheduling schemes adopted in the above
solutions. Note that the Lyapunov solution is proposed for the
single-user problem without resource allocation. To fairly com-
pare the optimal packet scheduling with the packet scheduling
in the Lyapunov solution that ignores video traffic, we adopt
the proposed optimal resource allocation scheme in the Lya-
punov solution. Similarly, since the proposed and MU-MDP
solutions use the same optimal packet scheduling, we can fairly
compare the proposed resource allocation with the suboptimal
foresighted resource allocation based on uniform price.
1) Resource Allocation and Packet Scheduling Decisions

Made by Different Solutions: Before comparing the per-
formance of different solutions, we illustrate the resource
allocation and packet scheduling of different solutions under
one realization of a sequence of traffic states and channel states.
From this illustration, we can better understand the differences
of the resource allocation and packet scheduling decisions made
by different solutions and their impact on the video quality.
For illustrative purposes, we consider a simple but repre-

sentative system with two users streaming video sequence
Foreman. User 1 encodes the sequence with GOP structure
“IPB” and user 2 with GOP structure “IPP.” We fix the numbers
of packets in the I, P, B frames to be 40, 10, 10, respectively.
The scheduling time window is 2. The channel state has two
values, “good” and “bad” (Note that we use binary channel
states only to make our illustration easier to understand; The
number of channel states in our model can be much larger
than two.). When the channel state is good (bad), the two users
can transmit up to 60 (40) packets in total. We illustrate the
resource allocation and packet scheduling of different solutions
in Tables VIII–XI.
In the myopic solution, the resource allocation is static and

determined based on the total distortion impact of the users.
Since the users have very similar GOP structures, the resource
allocation is fixed at (0.50, 0.50) in all the time slots. The packet
scheduling is EDF. From Table VIII, we can see that severe
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TABLE VIII
RESOURCE ALLOCATION AND PACKET SCHEDULING OF THE MYOPIC (REPEATED NUM) SOLUTION.

TABLE IX
RESOURCE ALLOCATION AND PACKET SCHEDULING OF THE LYAPUNOV SOLUTION.

TABLE X
RESOURCE ALLOCATION AND PACKET SCHEDULING OF THE MU-MDP SOLUTION.

TABLE XI
RESOURCE ALLOCATION AND PACKET SCHEDULING OF THE PROPOSED SOLUTION.

packet loss occurs due to three consecutive bad channel states.
In particular, in the second bad channel state, user 1's I frame ap-
proaches its transmission deadline and needs to be transmitted,
while user 2's I frame can wait to be transmitted in the next
time slot. However, due to the static resource allocation, it can
only transmit 20 packets and has to discard 20 packets of its
I frame. The same problem occurs in the Lyapunov solution.
However, since we adopt the proposed optimal resource allo-
cation, only 7 packets of the I frame are lost in the second bad
channel state. Another problem of both myopic and Lyapunov
solutions is that they schedule based on deadlines without con-
sidering the distortion impact of the packets. For example, in
the third bad channel state, user 1 has context (P, B, I) with the
I frame of the next GOP having the latest deadline. As a conse-
quence, both solutions schedule the packets of P and B frames,
leaving many packets of I frame in the buffer. This results in
the loss of 10 packets and 4 packets of the I frame in the myopic
and Lyapunov solutions, respectively.
We can see from Table XI that the proposed solution achieves

much better performance due to foresighted resource allocation

TABLE XII
COMPARISONS OF PSNR UNDER DIFFERENT ENERGY CONSUMPTIONS.

TABLE XIII
COMPARISONS OF PSNR UNDER SIMPLER SCHEDULING ALGORITHMS.

and packet scheduling. First, notice that as in all the other so-
lutions, the I frame experiences packet losses in the first time
slot, where there are 80 packets of I frame in total and the trans-
mission capacity is 60 packets. This packet loss is inevitable
since there is no room for foresighted resource allocation and
packet schedule ahead of the first time slot. The distinction of
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TABLE XIV
COMPARISONS OF PSNR UNDER DIFFERENT NUMBERS OF USERS.

TABLE XV
COMPARISONS OF PSNR UNDER DIFFERENT CHANNEL CONDITIONS AND TOTAL RATES.

the proposed solution is evident in the bad channel states. In
the second bad channel state, it allocates much more resource
(72%) to user 1, although both users have a I frame to transmit.
This is because user 1's I frame reaches its transmission dead-
line at this time slot. Hence, such an allocation meets the urgent
need for resource of user 1 and avoids packet loss in its I frame.
In addition, when the context is (P, B, I) with I frame of the
next GOP having the latest deadline, the proposed solution will
still schedule some packets of I frames at the expense of losing
some packets of P and B frames. Due to foresighted resource al-
location and packet scheduling, the proposed solution loses no
packet of the I frames, which will result in much higher video
quality than the other solutions.
The MU-MDP solution illustrated in Table X uses the same

optimal packet scheduling as proposed and a suboptimal re-
source allocation. As we have discussed earlier, the MU-MDP
solution uses a uniform price, which needs to be set high enough
to avoid the violation of the resource constraints. Hence, the re-
source allocation is relatively conservative, as we can see from
Table X. Although the initial resource allocation shown in the
table will be scaled up by the BS as in [17] to ensure full re-
source utilization, the proportion of the resource allocation is
suboptimal. This suboptimal resource allocation results in the
loss of 7 packets of the I frame in the third bad channel state,
because user 2 does not get enough resources.
2) PSNR and Energy Consumption Tradeoff: We compare

the proposed solution with existing solutions in terms of PSNR
and energy consumption. We change the tradeoff parameter
from 1 to 30 to get different PSNR and energy consumption
tradeoffs. We assume that there are three users streaming the
three different video sequences, respectively. The results are
listed in Table XII. We can see that the proposed solution can
achieve for all the users 7 dB PSNR improvement compared
to the myopic solution, 5 dB PSNR improvement compared
to the Lyapunov solution, and 3 dB PSNR improvement com-
pared to the MU-MDP solution with uniform price. Moreover,
the proposed solution can achieve high PSNR for all the three
different video sequences, while existing solutions may result
in low quality (e.g., less than 30 dB PSNR) especially for the
more challenging “Coastguard” and “Mobile” videos.
3) Scaling With the Number of Users: Now we compare the

proposed solution with existing solutions in terms of the average

PSNR across users when the number of users increases. The en-
ergy consumption is fixed at 0.15 Joule. We assume that all the
users stream the “Foreman” video sequence. Table XIV sum-
marizes the results for different numbers of users. We can see
that the performance gain of the proposed solution increases
with the number of users. In particular, the proposed solution
can achieve high enough PSNR for high-quality video trans-
mission (e.g., larger than 30 dB PSNR) even when there are 20
users sharing the same resource. On the contrary, the myopic so-
lution, the Lyapunov solution, and the MU-MDP solution may
not achieve high-quality video transmission when the number
of users exceeds 9, 9, and 13, respectively.
4) Different Channel Conditions and Total Rates: We com-

pare different solutions under different channel conditions and
total rates (which is the total rate of source coding and channel
coding). We consider a scenario with 10 users streaming the
video sequence Foreman. The channel condition (i.e., )
varies from 1.0 dB to 2.0 dB, and the total rate varies from
256 kb/s to 1024 kb/s. We use adaptive error protection by
changing the ratio of the source coding rate to the total rate.
Specifically, under channel conditions of 1.0 dB, 1.5 dB, and
2.0 dB, the corresponding ratios of the source coding rate to the
total rate are 50%, 60%, and 75%, respectively. In other words,
we have better error protection when the channel is worse.
We summarize the PSNR achieved by different solutions in
Table XV. We can see that the proposed solution outperforms
the other solutions in various channel conditions and encoding
rates considered, with an average improvement in PSNR of
10 dB over the myopic solution, 7 dB over the Lyapunov
solution, and 5 dB over the MU-MDP solution.

C. Comparison of Resource Allocation Under Different Packet
Scheduling Algorithms

The proposed solution consists of two parts: packet sched-
uling and resource allocation. The proposed solution is optimal
when each user adopts the optimal packet scheduling. How-
ever, the optimal packet scheduling is achieved by solving a
MDP, which may have high computational complexity (even
though we have decoupled the users' decision problems and thus
have reduced the state space of each user's MDP). In practice,
however, the users may adopt simpler but suboptimal packet
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scheduling algorithms. Next, we demonstrate that such sim-
pler packet scheduling algorithms can be easily combined with
our proposed resource allocation scheme, and show that when
using simpler scheduling algorithms, our resource allocation
scheme still outperforms the resource allocation of the myopic
and MU-MDP solutions with uniform price. Specifically, we
consider the following three simpler scheduling algorithms:
• EDF (Earliest Deadline First) scheduling: schedule all the
packets of the frame with the earliest deadline first within
its deadline.

• FIFO (First-In First-Out) scheduling: schedule all the
packets of the frame that comes in the buffer first within
its deadline.

• HDF (Highest Distortion First) scheduling: schedule all the
packets of the frame with the highest distortion impact first
within its deadline.

We consider a scenario with 10 users streaming the video se-
quence Foreman. The channel condition (i.e., ) is 1.5 dB,
and the encoding rate is 512 kb/s. In Table XIII, we compare
the proposed resource allocation with myopic resource alloca-
tion and the resource allocation in the MU-MDP solution under
different scheduling algorithms.We can see that our proposed re-
source allocation scheme outperforms the other resource alloca-
tion schemes even when we use simpler scheduling algorithms.
Moreover, the performance loss induced by using simpler sched-
uling algorithms is smaller under our proposed solution (around
3 dB), compared to the myopic solution (around 5 dB).

VII. CONCLUSION

We propose the optimal foresighted resource allocation and
packet scheduling for multi-user wireless video transmission.
The proposed solution achieves the optimal long-term video
quality subject to each user's minimum video quality guarantee,
by dynamically allocating resources among the users and dy-
namically scheduling the users' packetswhile taking into account
the dynamics of the video traffic and channel states. We develop
a low-complexity algorithm that can be implemented by the BS
and the users in an informationally-decentralized manner and
converges to theoptimal solution.Through extensive simulation,
we demonstrate the performance gain of our proposed solution
over existing solutions under a wide range of deployment sce-
narios: different number of users, different channel conditions,
different video encoding rates, and different (simpler but subop-
timal)packet schedulingalgorithms.Thesimulation results show
that our proposed solution can achieve significant improvements
in PSNR of up to 7 dB compared to myopic solutions and of up
to 3 dB compared to state-of-the-art foresighted solutions.
Our solution is versatile and can be applied to 4G LTE cel-

lular networks or IEEE 802.11a/e wireless LANs with real-time
or offline video encoding. It can be readily extended to more
general multi-user resource allocation and scheduling problems
with correlated traffic states and channel states, where the video
traffic is generated by the video encoder at run-time based on
the time-varying channel conditions.

APPENDIX
PROOF OF THEOREM 1

Due to limited space, we give a detailed proof sketch. The
proof consists of three key steps. First, we prove that by penal-
izing the constraints into the objective
function, the decision problems of different entities can be de-
centralized. Hence, we can derive optimal decentralized strate-
gies for different entities under given Lagrangian multipliers.
Then we prove that the update of Lagrangian multipliers con-
verges to the optimal ones under which there is no duality gap
between the primal problem and the dual problem, due to the
convexity assumptions made on the cost functions. Finally, we
validate the calculation of the prices.
First, suppose that there is a central controller that knows ev-

erything about the system. Then the optimal strategy to the de-
sign problem (4) should result in a value function that satis-
fies the following Bellman equation: for all , we have

(8)

Defining a Lagrangian multiplier associated
with the constraints , and penalizing
the constraints on the objective function, we get the following
Bellman equation:

(9)

In the following lemma, we can prove that (9) can be
decomposed.

Lemma 2: The optimal value function that solves (9)
can be decomposed as for all

, where can be computed by user locally by
solving

(10)

Proof: This can be proved by the independence of
different entities' states and by the decomposition of the
constraints . Specifically the constraints

are linear with respect to the actions
. As a result, we can decompose the constraints as

.
We have proved that by penalizing the constraint

using Lagrangian multiplier , different
entities can compute the optimal value function
distributively. Due to the convexity assumptions on the cost
functions, we can show that the primal problem (4) is convex.
Hence, there is no duality gap. In other words, at the optimal
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Lagrangian multipliers , the corresponding value func-
tion is equal to the
optimal value function of the primal problem
(8). It is left to show that the update of Lagrangian multipliers
converge to the optimal ones. It is a well-known result in
dynamic programming that is convex and piecewise
linear in , and that the subgradient is .
Note that we use the sample mean of , whose expectation is
the true mean value of . Since is linear in
, the subgradient calculated based on the sample mean has

the same mean value as the subgradient calculated based on
the true mean values. In other words, the update is a stochastic
subgradient descent method. It is well-known that when the
stepsize , the stochastic subgradient descent
will converge to the optimal [24].
Finally, we can write the prices by taking the derivatives of

the penalty terms. For user , its penalty is .
Hence, its price is
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